18 research outputs found

    Shift Work in Nurses: Contribution of Phenotypes and Genotypes to Adaptation

    Get PDF
    Daily cycles of sleep/wake, hormones, and physiological processes are often misaligned with behavioral patterns during shift work, leading to an increased risk of developing cardiovascular/metabolic/gastrointestinal disorders, some types of cancer, and mental disorders including depression and anxiety. It is unclear how sleep timing, chronotype, and circadian clock gene variation contribute to adaptation to shift work.Newly defined sleep strategies, chronotype, and genotype for polymorphisms in circadian clock genes were assessed in 388 hospital day- and night-shift nurses.Night-shift nurses who used sleep deprivation as a means to switch to and from diurnal sleep on work days (∼25%) were the most poorly adapted to their work schedule. Chronotype also influenced efficacy of adaptation. In addition, polymorphisms in CLOCK, NPAS2, PER2, and PER3 were significantly associated with outcomes such as alcohol/caffeine consumption and sleepiness, as well as sleep phase, inertia and duration in both single- and multi-locus models. Many of these results were specific to shift type suggesting an interaction between genotype and environment (in this case, shift work).Sleep strategy, chronotype, and genotype contribute to the adaptation of the circadian system to an environment that switches frequently and/or irregularly between different schedules of the light-dark cycle and social/workplace time. This study of shift work nurses illustrates how an environmental "stress" to the temporal organization of physiology and metabolism can have behavioral and health-related consequences. Because nurses are a key component of health care, these findings could have important implications for health-care policy

    Publisher Correction: Methylation deficiency disrupts biological rhythms from bacteria to humans

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: registration 2020-05-27, pub-electronic 2020-06-04, online 2020-06-04, collection 2020-12Publication status: PublishedAn amendment to this paper has been published and can be accessed via a link at the top of the paper

    The methyl cycle is a conserved regulator of biological clocks

    Full text link
    AbstractThe methyl cycle is a universally conserved metabolic pathway operating in prokaryotes and eukaryotes. In this pathway, the amino acid methionine is used to synthesize S-adenosylmethionine, the methyl donor co-substrate in the methylation of nucleic acids, histone and non-histone proteins and many other molecules within the cell. The methylation of nucleic acids and proteins is the foundation of epigenetic and epitranscriptomic regulations of gene expression, but whether the methyl cycle centrally regulates gene expression and function by controlling the availability of methyl moieties is poorly understood.From cyanobacteria to humans, a circadian clock that involves an exquisitely regulated transcription-translation-feedback loop driving oscillations in gene expression and orchestrating physiology and behavior has been described. We reported previously that inhibition of the methyl cycle in mammalian cells caused the lengthening of the period of these oscillations, suggesting the methyl cycle may indeed act as a central regulator of gene expression, at least in mammals. Here, we investigated whether the methyl cycle, given its universal presence among living beings, regulates the circadian clock in species across the phylogenetic tree of life.We reveal a remarkable evolutionary conservation of the link between the methyl cycle and the circadian clock. Moreover, we show that the methyl cycle also regulates the somite segmentation clock, another transcription-translation negative feedback loop-based timing mechanism that orchestrate embryonic development in vertebrates, highlighting the methyl cycle as a master regulator of biological clocks.SIGNIFICANCE STATEMENTHere we reveal that the methyl cycle, a universal metabolic pathway leading to the synthesis of S-adenosylmethionine, the methyl donor co-substrate in virtually all transmethylation reactions within the cell, is a conserved regulator of biological clocks. These discoveries highlight the methyl cycle as a metabolic hub that regulates gene expression via the availability of methyl moieties for the methylation of nucleic acids, proteins and many other molecules with the cell.</jats:sec

    Intramolecular Regulation of Phosphorylation Status of the Circadian Clock Protein KaiC

    Full text link
    . Structural analyses of KaiC crystals have identified threonine and serine residues in KaiC at three residues (T426, S431, and T432) as potential sites at which KaiC is phosphorylated; mutation of any of these three sites to alanine abolishes rhythmicity, revealing an essential clock role for each residue separately and for KaiC phosphorylation in general. Mass spectrometry studies confirmed that the S431 and T432 residues are key phosphorylation sites, however, the role of the threonine residue at position 426 was not clear from the mass spectrometry measurements. phosphorylation assays of KaiC demonstrate labile phosphorylation of KaiC when the primary S431 and T432 sites are blocked. and these studies underscore the importance of KaiC phosphorylation status in the essential cyanobacterial circadian functions. The regulatory roles of these phosphorylation sites–including T426–within KaiC enhance our understanding of the molecular mechanism underlying circadian rhythm generation in cyanobacteria

    The methyl cycle is a conserved regulator of biological clocks

    No full text
    The methyl cycle is a universally conserved metabolic pathway operating in prokaryotes and eukaryotes. In this pathway, the amino acid methionine is used to synthesize S-adenosylmethionine, the methyl donor co-substrate in the methylation of nucleic acids, histone and non-histone proteins and many other molecules within the cell. The methylation of nucleic acids and proteins is the foundation of epigenetic and epitranscriptomic regulations of gene expression, but whether the methyl cycle centrally regulates gene expression and function by controlling the availability of methyl moieties is poorly understood.From cyanobacteria to humans, a circadian clock that involves an exquisitely regulated transcription-translation-feedback loop driving oscillations in gene expression and orchestrating physiology and behavior has been described. We reported previously that inhibition of the methyl cycle in mammalian cells caused the lengthening of the period of these oscillations, suggesting the methyl cycle may indeed act as a central regulator of gene expression, at least in mammals. Here, we investigated whether the methyl cycle, given its universal presence among living beings, regulates the circadian clock in species across the phylogenetic tree of life.We reveal a remarkable evolutionary conservation of the link between the methyl cycle and the circadian clock. Moreover, we show that the methyl cycle also regulates the somite segmentation clock, another transcription-translation negative feedback loop-based timing mechanism that orchestrate embryonic development in vertebrates, highlighting the methyl cycle as a master regulator of biological clocks.SIGNIFICANCE STATEMENT Here we reveal that the methyl cycle, a universal metabolic pathway leading to the synthesis of S-adenosylmethionine, the methyl donor co-substrate in virtually all transmethylation reactions within the cell, is a conserved regulator of biological clocks. These discoveries highlight the methyl cycle as a metabolic hub that regulates gene expression via the availability of methyl moieties for the methylation of nucleic acids, proteins and many other molecules with the cell
    corecore