101 research outputs found

    Thermal generation of spin current in a helimagnetic multiferroic hexaferrite

    Get PDF
    We report the experimental observation of longitudinal spin Seebeck effect in a multiferroic helimagnet Ba0.5Sr1.5Zn2Fe12O22. Temperature gradient applied normal to Ba0.5Sr1.5Zn2Fe12O22/Pt interface generates inverse spin Hall voltage of spin current origin in Pt, whose magnitude was found to be proportional to bulk magnetization of Ba0.5Sr1.5Zn2Fe12O22 even through the successive magnetic transitions among various helimagnetic and ferrimagnetic phases. This finding demonstrates that the helimagnetic spin wave can be an effective carrier of spin current. By controlling the population ratio of spin-helicity domains characterized by clockwise/counter-clockwise manner of spin rotation with use of poling electric field in the ferroelectric helimagnetic phase, we found that spin-helicity domain distribution does not affect the magnitude of spin current injected into Pt. The results suggest that the spin-wave spin current is rather robust against the spin-helicity domain wall, unlike the case with the conventional ferromagnetic domain wall.Comment: 12 pages, 4 figure

    Environmental Effects on the Star Formation Activity at z~0.9 in the COSMOS Field

    Full text link
    We investigated the fraction of [OII] emitters in galaxies at z~0.9 as a function of the local galaxy density in the Hubble Space Telescope (HST) COSMOS 2 square degree field. [OII] emitters are selected by the narrow-band excess technique with the NB711-band imaging data taken with Suprime-Cam on the Subaru telescope. We carefully selected 614 photo-z selected galaxies with M_U3500 < -19.31 at z=0.901-0.920, which includes 195 [OII] emitters, to directly compare results with our previous study at z~1.2. We found that the fraction is almost constant at 0.3 Mpc^-2 < Sigma_10th < 10 Mpc^-2. We also checked the fraction of galaxies with blue rest-frame colors of NUV-R < 2 in our photo-z selected sample, and found that the fraction of blue galaxies does not significantly depend on the local density. On the other hand, the semi-analytic model of galaxy formation predicted that the fraction of star-forming galaxies at z~0.9 decreases with increasing the projected galaxy density even if the effects of the projection and the photo-z error in our analysis were taken into account. The fraction of [OII] emitters decreases from ~60% at z~1.2 to ~30% at z~0.9 independent of the galaxy environment. The decrease of the [OII] emitter fraction could be explained mainly by the rapid decrease of the star formation activity in the universe from z~1.2 to z~0.9.Comment: 14 pages, 13 figures, 2 tables, Accepted for publication in Ap

    Environmental Effects on the Star Formation Activity in Galaxies at z ≃ 1.2 in the COSMOS Field

    Get PDF
    We investigate the relation between the star formation activity in galaxies and environment at z ≃ 1.2 in the Cosmic Evolution Survey field, using the fraction of [O II] emitters and the local galaxy density. The fraction of [O II] emitters appears to be almost constant over the surface density of galaxies between 0.2 and 10 Mpc^(–2). This trend is different from that seen in the local universe where the star formation activity is weaker in higher density regions. To understand this difference between z ~ 1 and z ~ 0, we study the fraction of non-isolated galaxies as a function of local galaxy density. We find that the fraction of non-isolated galaxies increases with increasing density. Our results suggest that the star formation in galaxies at z ~ 1 is triggered by galaxy interaction and/or mergers

    The 10k zCOSMOS: morphological transformation of galaxies in the group environment since z~1

    Full text link
    We study the evolution of galaxies inside and outside of the group environment since z=1 using a large well defined set of groups and galaxies from the zCOSMOS-bright redshift survey in the COSMOS field. The fraction of galaxies with early-type morphologies increases monotonically with M_B luminosity and stellar mass and with cosmic epoch. It is higher in the groups than elsewhere, especially at later epochs. The emerging environmental effect is superposed on a strong global mass-driven evolution, and at z~0.5 and log(M*/Msol)~10.2, the "effect" of group environment is equivalent to (only) about 0.2 dex in stellar mass or 2 Gyr in time. The stellar mass function of galaxies in groups is enriched in massive galaxies. We directly determine the transformation rates from late to early morphologies, and for transformations involving colour and star formation indicators. The transformation rates are systematically about twice as high in the groups as outside, or up to 3-4 times higher correcting for infall and the appearance of new groups. The rates reach values, for masses around the crossing mass 10^10.5 Msol, as high as (0.3-0.7)/Gyr in the groups, implying transformation timescales of 1.4-3 Gyr, compared with less than 0.2/Gyr, i.e. timescales >5 Gyr, outside of groups. All three transformation rates decrease at higher stellar masses, and must decrease also at the lower masses below 10^10 Msol which we cannot well probe. The rates involving colour and star formation are consistently higher than those for morphology, by a factor of about 50%. Our conclusion is that the transformations which drive the evolution of the overall galaxy population since z~1 must occur at a rate 2-4 times higher in groups than outside of them.Comment: 21 pages, 13 figures, submitted to Ap

    Hubble Space Telescope/Advanced Camera for Surveys Morphology of Lyα Emitters at Redshift 5.7 in the COSMOS Field

    Get PDF
    We present detailed morphological properties of Lyα emitters (LAEs) at z ≈ 5.7 in the COSMOS field based on Hubble Space Telescope Advanced Camera for Surveys (ACS) data. The ACS imaging in the F814W filter covered 85 LAEs of the 119 LAEs identified in the full two square degree field, and 47 LAEs of them are detected in the ACS images. Nearly half of them are spatially extended with a size larger than 0.15 arcsec (~0.88 kpc at z = 5.7) and up to 0.4 arcsec (~2.5 kpc at z = 5.7). The others are nearly unresolved compact objects. Two LAEs show double-component structures indicating interaction or merging of building components to form more massive galaxies. By stacking the ACS images of all the detected sources, we obtain a Sersic parameter of n ~ 0.7 with a half-light radius of 0.13 arcsec (0.76 kpc), suggesting that the majority of ACS detected LAEs have not spheroidal-like but disk-like or irregular light profiles. Comparing ACS F814W magnitudes (I _(814)) with Subaru/Suprime-Cam magnitudes in the NB816, i', and z' bands, we find that the ACS imaging in the F814W band mainly probes UV continuum rather than Lyα line emission. UV continuum sizes tend to be larger for LAEs with larger Lyα emission regions as traced by the NB816 imaging. The nondetection of 38 LAEs in the ACS images is likely due to the fact that their surface brightness is too low both in the UV continuum and Lyα emission. Estimating I_(814) for the ACS-undetected LAEs from the z' and NB816 magnitudes, we find that 16 of these are probably LAEs with a size larger than 0.15 arcsec in UV continuum. All these results suggest that our LAE sample contains systematically larger LAEs in UV continuum size than those previously studied at z ~ 6

    Observation of the Magnon Hall Effect

    Full text link
    The Hall effect usually occurs when the Lorentz force acts on a charge current in a conductor in the presence of perpendicular magnetic field. On the other hand, neutral quasi-particles such as phonons and spins can carry heat current and potentially show the Hall effect without resorting to the Lorentz force. We report experimental evidence for the anomalous thermal Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore lattice structure. Our theoretical analysis indicates that the propagation of the spin wave is influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector potential as in the intrinsic anomalous Hall effect in metallic ferromagnets.Comment: 12 pages, 4 figures. Submitted to Science on February 12 and published by Science on July 16, 2010 (10.1126/science.1188260). Supporting online material available at http://www.sciencemag.org/cgi/content/full/sci;329/5989/297/DC

    Observation of the nonlinear Hall effect under time reversal symmetric conditions

    Full text link
    The electrical Hall effect is the production of a transverse voltage under an out-of-plane magnetic field. Historically, studies of the Hall effect have led to major breakthroughs including the discoveries of Berry curvature and the topological Chern invariants. In magnets, the internal magnetization allows Hall conductivity in the absence of external magnetic field. This anomalous Hall effect (AHE) has become an important tool to study quantum magnets. In nonmagnetic materials without external magnetic fields, the electrical Hall effect is rarely explored because of the constraint by time-reversal symmetry. However, strictly speaking, only the Hall effect in the linear response regime, i.e., the Hall voltage linearly proportional to the external electric field, identically vanishes due to time-reversal symmetry. The Hall effect in the nonlinear response regime, on the other hand, may not be subject to such symmetry constraints. Here, we report the observation of the nonlinear Hall effect (NLHE) in the electrical transport of the nonmagnetic 2D quantum material, bilayer WTe2. Specifically, flowing an electrical current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of magnetic field. The NLHE exhibits unusual properties sharply distinct from the AHE in metals: The NLHE shows a quadratic I-V characteristic; It strongly dominates the nonlinear longitudinal response, leading to a Hall angle of about 90 degree. We further show that the NLHE directly measures the "dipole moment" of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new Hall effect and provide a powerful methodology to detect Berry curvature in a wide range of nonmagnetic quantum materials in an energy-resolved way

    Post-starburst Tidal Tails in the Archetypical Ultra Luminous Infrared Galaxy Arp 220

    Full text link
    We present our new deep optical imaging and long-slit spectroscopy for Arp 220 that is the archetypical ULIRG in the local universe. Our sensitive Ha imaging has newly revealed large-scale, Ha absorption, i.e., post-starburst regions in this merger; one is found in the eastern superbubble and the other is in the two tidal tails that are clearly reveled in our deep optical imaging. The size of Ha absorption region in the eastern bubble is 5 kpc x 7.5 kpc and the observed Ha equivalent widths are ~2 A +- 0.2 A. The sizes of the northern and southern Ha-absorption tidal tails are ~5 kpc x 10 kpc and ~6 kpc x 20 kpc, respectively. The observed Ha equivalent widths range from 4 A to 7 A. In order to explain the presence of the two post-starburst tails, we suggest a possible multiple-merger scenario for Arp 220 in which two post-starburst disk-like structures merged into one, and then caused the two tails. This favors that Arp 220 is a multiple merging system composed of four or more galaxies, arising from a compact group of galaxies. Taking our new results into account, we discuss a star formation history in the last 1 Gyr in Arp 220.Comment: 6 pages, 7 figures, Accepted for publication in the Astrophysical Journa

    Effect of lattice geometry on magnon Hall effect in ferromagnetic insulators

    Full text link
    We have investigated the thermal Hall effect of magnons for various ferromagnetic insulators. For pyrochlore ferromagnetic insulators Lu2_2V2_2O7_7, Ho2_2V2_2O7_7, and In2_2Mn2_2O7_7, finite thermal Hall conductivities have been observed below the Curie temperature TCT_C . From the temperature and magnetic field dependences, it is concluded that magnons are responsible for the thermal Hall effect. The Hall effect of magnons can be well explained by the theory based on the Berry curvature in momentum space induced by the Dzyaloshinskii-Moriya (DM) interaction. The analysis has been extended to the transition metal (TM) oxides with perovskite structure. The thermal Hall signal was absent or far smaller in La2_2NiMnO6_6 and YTiO3_3, which have the distorted perovskite structure with four TM ions in the unit cell. On the other hand, a finite thermal Hall response is discernible below TCT_C in another ferromagentic perovskite oxide BiMnO3_3, which shows orbital ordering with a larger unit cell. The presence or absence of the thermal Hall effect in insulating pyrochlore and perovskite systems reflect the geometric and topological aspect of DM-induced magnon Hall effect.Comment: 26 pages, 14 figures; v2: accepted versio
    corecore