810 research outputs found
X-ray absorption study of Ti-activated sodium aluminum hydride
Ti K-edge x-ray absorption near edge spectroscopy (XANES) was used to explore
the Ti valence and coordination in Ti-activated sodium alanate. An empirical
relationship was established between the Ti valence and the Ti K-edge onset
based on a set of standards. This relationship was used to estimate oxidation
states of the titanium catalyst in 2 mol% and 4 mol% Ti-doped NaAlH4. These
results demonstrate that the formal titanium valence is zero in doped sodium
alanate and nearly invariant during hydrogen cycling. A qualitative comparison
of the edge fine structure suggests that the Ti is present on the surface in
the form of amorphous TiAl3.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let
Structural phase transition below 250 K in superconducting KFeSe
Vibrational properties of iron-chalcogenide superconductor
KFeSe with 30 K have been measured by Raman
and optical spectroscopies over temperature range of 3-300 K. Sample undergoes
\textit{I4/m} \textit{I4} structural phase transition accompanied by
loss of inversion symmetry at , below 250 K, observed as appearance of
new fully-symmetric Raman mode at 165 cm. Small vibration mode
anomalies are also observed at 160 K. From first-principles
vibrational analysis of antiferromagnetic KFeSe utilizing
pseudopotentials all observed Raman and infrared modes have been assigned and
the displacement patterns of the new Raman mode identified as involving
predominantly the Se atoms
Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field
We study a resistively shunted semiconductor superlattice subject to a
high-frequency electric field. Using a balance equation approach that
incorporates the influence of the electric circuit, we determine numerically a
range of amplitude and frequency of the ac field for which a dc bias and
current are generated spontaneously and show that this region is likely
accessible to current experiments. Our simulations reveal that the Bloch
frequency corresponding to the spontaneous dc bias is approximately an integer
multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure
Suppressed absolute negative conductance and generation of high-frequency radiation in semiconductor superlattices
We show that space-charge instabilities (electric field domains) in
semiconductor superlattices are the attribute of absolute negative conductance
induced by small constant and large alternating electric fields. We propose the
efficient method for suppression of this destructive phenomenon in order to
obtain a generation at microwave and THz frequencies in devices operating at
room temperature. We theoretically proved that an unbiased superlattice with a
moderate doping subjected to a microwave pump field provides a strong gain at
third, fifth, seventh, etc. harmonics of the pump frequency in the conditions
of suppressed domains.Comment: 8 pages. Development of cond-mat/0503216 . Version 2: Final version,
erratum is include
Theory of Coherent Time-dependent Transport in One-dimensional Multiband Semiconductor Superlattices
We present an analytical study of one-dimensional semiconductor superlattices
in external electric fields, which may be time-dependent. A number of general
results for the (quasi)energies and eigenstates are derived. An equation of
motion for the density matrix is obtained for a two-band model, and the
properties of the solutions are analyzed. An expression for the current is
obtained. Finally, Zener-tunneling in a two-band tight-binding model is
considered. The present work gives the background and an extension of the
theoretical framework underlying our recent Letter [J. Rotvig {\it et al.},
Phys. Rev. Lett. {\bf 74}, 1831 (1995)], where a set of numerical simulations
were presented.Comment: 15 pages, Revtex 3.0, uses epsf, 2 ps figures attache
Bloch oscillations, Zener tunneling and Wannier-Stark ladders in the time-domain
We present a time-domain analysis of carrier dynamics in a semiconductor
superlattice with two minibands. Integration of the density-matrix equations of
motion reveals a number of new features: (i) for certain values of the applied
static electric field strong interband transitions occur; (ii) in static fields
the complex time-dependence of the density-matrix displays a sequence of stable
plateaus in the low field regime, and (iii) for applied fields with a periodic
time-dependence the dynamic response can be understood in terms of the
quasienergy spectra.Comment: 4 pages, 6 PostScript figures available from [email protected], REVTEX
3.
Phonon spectrum and soft-mode behavior of MgCNi_3
Temperature dependent inelastic neutron-scattering measurements of the
generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give
evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are
compared with ab initio density functional calculations which suggest an
incipient lattice instability of the stoichiometric compound with respect to Ni
vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure
Gain without inversion in a biased superlattice
Intersubband transitions in a superlattice under homogeneous electric field
is studied within the tight-binding approximation. Since the levels are
equi-populated, the non-zero response appears beyond the Born approximation.
Calculations are performed in the resonant approximation with scattering
processes exactly taken into account. The absorption coefficient is equal zero
for the resonant excitation while a negative absorption (gain without
inversion) takes place below the resonance. A detectable gain in the THz
spectral region is obtained for the low-doped -based superlattice and
spectral dependencies are analyzed taking into account the interplay between
homogeneous and inhomogeneous mechanisms of broadening.Comment: 6 pages, 4 figure
Two mini-band model for self-sustained oscillations of the current through resonant tunneling semiconductor superlattices
A two miniband model for electron transport in semiconductor superlattices
that includes scattering and interminiband tunnelling is proposed. The model is
formulated in terms of Wigner functions in a basis spanned by Pauli matrices,
includes electron-electron scattering in the Hartree approximation and modified
Bhatnagar-Gross-Krook collision tems. For strong applied fields, balance
equations for the electric field and the miniband populations are derived using
a Chapman-Enskog perturbation technique. These equations are then solved
numerically for a dc voltage biased superlattice. Results include
self-sustained current oscillations due to repeated nucleation of electric
field pulses at the injecting contact region and their motion towards the
collector. Numerical reconstruction of the Wigner functions shows that the
miniband with higher energy is empty during most of the oscillation period: it
becomes populated only when the local electric field (corresponding to the
passing pulse) is sufficiently large to trigger resonant tunneling.Comment: 26 pages, 3 figures, to appear in Phys. Rev.
- …
