810 research outputs found

    X-ray absorption study of Ti-activated sodium aluminum hydride

    Full text link
    Ti K-edge x-ray absorption near edge spectroscopy (XANES) was used to explore the Ti valence and coordination in Ti-activated sodium alanate. An empirical relationship was established between the Ti valence and the Ti K-edge onset based on a set of standards. This relationship was used to estimate oxidation states of the titanium catalyst in 2 mol% and 4 mol% Ti-doped NaAlH4. These results demonstrate that the formal titanium valence is zero in doped sodium alanate and nearly invariant during hydrogen cycling. A qualitative comparison of the edge fine structure suggests that the Ti is present on the surface in the form of amorphous TiAl3.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Structural phase transition below 250 K in superconducting K0.75_{0.75}Fe1.75_{1.75}Se2_{2}

    Full text link
    Vibrational properties of iron-chalcogenide superconductor K0.75_{0.75}Fe1.75_{1.75}Se2_{2} with TcT_{c}\sim 30 K have been measured by Raman and optical spectroscopies over temperature range of 3-300 K. Sample undergoes \textit{I4/m} \to \textit{I4} structural phase transition accompanied by loss of inversion symmetry at T1T_{1}, below 250 K, observed as appearance of new fully-symmetric Raman mode at \sim 165 cm1^{-1}. Small vibration mode anomalies are also observed at T2T_{2}\sim 160 K. From first-principles vibrational analysis of antiferromagnetic K0.8_{0.8}Fe1.6_{1.6}Se2_{2} utilizing pseudopotentials all observed Raman and infrared modes have been assigned and the displacement patterns of the new Raman mode identified as involving predominantly the Se atoms

    Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field

    Get PDF
    We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure

    Suppressed absolute negative conductance and generation of high-frequency radiation in semiconductor superlattices

    Full text link
    We show that space-charge instabilities (electric field domains) in semiconductor superlattices are the attribute of absolute negative conductance induced by small constant and large alternating electric fields. We propose the efficient method for suppression of this destructive phenomenon in order to obtain a generation at microwave and THz frequencies in devices operating at room temperature. We theoretically proved that an unbiased superlattice with a moderate doping subjected to a microwave pump field provides a strong gain at third, fifth, seventh, etc. harmonics of the pump frequency in the conditions of suppressed domains.Comment: 8 pages. Development of cond-mat/0503216 . Version 2: Final version, erratum is include

    Theory of Coherent Time-dependent Transport in One-dimensional Multiband Semiconductor Superlattices

    Full text link
    We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time-dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model, and the properties of the solutions are analyzed. An expression for the current is obtained. Finally, Zener-tunneling in a two-band tight-binding model is considered. The present work gives the background and an extension of the theoretical framework underlying our recent Letter [J. Rotvig {\it et al.}, Phys. Rev. Lett. {\bf 74}, 1831 (1995)], where a set of numerical simulations were presented.Comment: 15 pages, Revtex 3.0, uses epsf, 2 ps figures attache

    Bloch oscillations, Zener tunneling and Wannier-Stark ladders in the time-domain

    Get PDF
    We present a time-domain analysis of carrier dynamics in a semiconductor superlattice with two minibands. Integration of the density-matrix equations of motion reveals a number of new features: (i) for certain values of the applied static electric field strong interband transitions occur; (ii) in static fields the complex time-dependence of the density-matrix displays a sequence of stable plateaus in the low field regime, and (iii) for applied fields with a periodic time-dependence the dynamic response can be understood in terms of the quasienergy spectra.Comment: 4 pages, 6 PostScript figures available from [email protected], REVTEX 3.

    Phonon spectrum and soft-mode behavior of MgCNi_3

    Full text link
    Temperature dependent inelastic neutron-scattering measurements of the generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are compared with ab initio density functional calculations which suggest an incipient lattice instability of the stoichiometric compound with respect to Ni vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure

    Gain without inversion in a biased superlattice

    Full text link
    Intersubband transitions in a superlattice under homogeneous electric field is studied within the tight-binding approximation. Since the levels are equi-populated, the non-zero response appears beyond the Born approximation. Calculations are performed in the resonant approximation with scattering processes exactly taken into account. The absorption coefficient is equal zero for the resonant excitation while a negative absorption (gain without inversion) takes place below the resonance. A detectable gain in the THz spectral region is obtained for the low-doped GaAsGaAs-based superlattice and spectral dependencies are analyzed taking into account the interplay between homogeneous and inhomogeneous mechanisms of broadening.Comment: 6 pages, 4 figure

    Two mini-band model for self-sustained oscillations of the current through resonant tunneling semiconductor superlattices

    Full text link
    A two miniband model for electron transport in semiconductor superlattices that includes scattering and interminiband tunnelling is proposed. The model is formulated in terms of Wigner functions in a basis spanned by Pauli matrices, includes electron-electron scattering in the Hartree approximation and modified Bhatnagar-Gross-Krook collision tems. For strong applied fields, balance equations for the electric field and the miniband populations are derived using a Chapman-Enskog perturbation technique. These equations are then solved numerically for a dc voltage biased superlattice. Results include self-sustained current oscillations due to repeated nucleation of electric field pulses at the injecting contact region and their motion towards the collector. Numerical reconstruction of the Wigner functions shows that the miniband with higher energy is empty during most of the oscillation period: it becomes populated only when the local electric field (corresponding to the passing pulse) is sufficiently large to trigger resonant tunneling.Comment: 26 pages, 3 figures, to appear in Phys. Rev.
    corecore