206 research outputs found

    Probability density functions of work and heat near the stochastic resonance of a colloidal particle

    Get PDF
    We study experimentally and theoretically the probability density functions of the injected and dissipated energy in a system of a colloidal particle trapped in a double well potential periodically modulated by an external perturbation. The work done by the external force and the dissipated energy are measured close to the stochastic resonance where the injected power is maximum. We show a good agreement between the probability density functions exactly computed from a Langevin dynamics and the measured ones. The probability density function of the work done on the particle satisfies the fluctuation theorem

    Work probability distribution in single molecule experiments

    Full text link
    We derive and solve a differential equation satisfied by the probability distribution of the work done on a single biomolecule in a mechanical unzipping experiment. The unzipping is described as a thermally activated escape process in an energy landscape. The Jarzynski equality is recovered as an identity, independent of the pulling protocol. This approach allows one to evaluate easily, by numerical integration, the work distribution, once a few parameters of the energy landscape are known.Comment: To appear on EP

    An Ising-Like model for protein mechanical unfolding

    Full text link
    The mechanical unfolding of proteins is investigated by extending the Wako-Saito-Munoz-Eaton model, a simplified protein model with binary degrees of freedom, which has proved successful in describing the kinetics of protein folding. Such a model is generalized by including the effect of an external force, and its thermodynamics turns out to be exactly solvable. We consider two molecules, the 27th immunoglobulin domain of titin and protein PIN1. In the case of titin we determine equilibrium force-extension curves and study nonequilibrium phenomena in the frameworks of dynamic loading and force clamp protocols, verifying theoretical laws and finding the position of the kinetic barrier which hinders the unfolding of the molecule. The PIN1 molecule is used to check the possibility of computing the free energy landscape as a function of the molecule length by means of an extended form of the Jarzynski equality.Comment: 4 pages + appendi

    Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    Full text link
    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven with a constant rate. The time evolution of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the performed work during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility.Comment: 21 pages, 7 figure

    A minimal model of an autonomous thermal motor

    Full text link
    We consider a model of a Brownian motor composed of two coupled overdamped degrees of freedom moving in periodic potentials and driven by two heat reservoirs. This model exhibits a spontaneous breaking of symmetry and gives rise to directed transport in the case of a non- vanishing interparticle interaction strength. For strong coupling between the particles we derive an expression for the propagation velocity valid for arbitrary periodic potentials. In the limit of strong coupling the model is equivalent to the B\"uttiker-Landauer model [1-3] for a single particle diffusing in an environment with position dependent temperature. By using numerical calculations of the Fokker-Planck equation and simulations of the Langevin equations we study the model for arbitrary coupling, retrieving many features of the strong coupling limit. In particular, directed transport emerges even for symmetric potentials. For distinct heat reservoirs the heat currents are well-defined quantities allowing a study of the motor efficiency. We show that the optimal working regime occurs for moderate coupling. Finally, we introduce a model with discrete phase space which captures the essential features of the continuous model, can be solved in the limit of weak coupling, and exhibits a larger efficiency than the continuous counterpart.Comment: Revised version. Extended discussion on the discrete model. To appear in EP

    Discrete Breathers in a Realistic Coarse-Grained Model of Proteins

    Full text link
    We report the results of molecular dynamics simulations of an off-lattice protein model featuring a physical force-field and amino-acid sequence. We show that localized modes of nonlinear origin (discrete breathers) emerge naturally as continuations of a subset of high-frequency normal modes residing at specific sites dictated by the native fold. In the case of the small β\beta-barrel structure that we consider, localization occurs on the turns connecting the strands. At high energies, discrete breathers stabilize the structure by concentrating energy on few sites, while their collapse marks the onset of large-amplitude fluctuations of the protein. Furthermore, we show how breathers develop as energy-accumulating centres following perturbations even at distant locations, thus mediating efficient and irreversible energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a local static distortion of the native fold. Altogether, the combination of this two nonlinear effects may provide a ready means for remotely controlling local conformational changes in proteins.Comment: Submitted to Physical Biolog

    Fluctuation theorems for stochastic dynamics

    Full text link
    Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.Comment: 48 pages, 2 figures. v2: minor changes for consistency with published versio

    Entropy production for mechanically or chemically driven biomolecules

    Full text link
    Entropy production along a single stochastic trajectory of a biomolecule is discussed for two different sources of non-equilibrium. For a molecule manipulated mechanically by an AFM or an optical tweezer, entropy production (or annihilation) occurs in the molecular conformation proper or in the surrounding medium. Within a Langevin dynamics, a unique identification of these two contributions is possible. The total entropy change obeys an integral fluctuation theorem and a class of further exact relations, which we prove for arbitrarily coupled slow degrees of freedom including hydrodynamic interactions. These theoretical results can therefore also be applied to driven colloidal systems. For transitions between different internal conformations of a biomolecule involving unbalanced chemical reactions, we provide a thermodynamically consistent formulation and identify again the two sources of entropy production, which obey similar exact relations. We clarify the particular role degenerate states have in such a description

    Path-integral analysis of fluctuation theorems for general Langevin processes

    Full text link
    We examine classical, transient fluctuation theorems within the unifying framework of Langevin dynamics. We explicitly distinguish between the effects of non-conservative forces that violate detailed balance, and non-autonomous dynamics arising from the variation of an external parameter. When both these sources of nonequilibrium behavior are present, there naturally arise two distinct fluctuation theorems.Comment: 24 pages, one figur
    corecore