7,507 research outputs found

    Shock Theory of a Bubbly Liquid in a Deformable Tube

    Get PDF
    Shock propagation through a bubbly liquid filled in a deformable cylindrical tube is considered. Quasi-one-dimensional bubbly flow equations that include fluid-structure interaction are formulated, and the steady shock relations are derived. Experiments are conducted in which a free-falling steel projectile impacts the top of an air/water mixture in a polycarbonate tube, and stress waves in the tube material are measured. The experimental data indicate that the linear theory cannot properly predict the propagation speeds of shock waves in mixture-filled tubes; the shock theory is found to more accurately estimate the measured wave speeds

    Electronic Structure of Charge- and Spin-controlled Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3}

    Get PDF
    We present the electronic structure of Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3} investigated by high-resolution photoemission spectroscopy. In the vicinity of Fermi level, it was found that the electronic structure were composed of a Cr 3d local state with the t_{2g}^{3} configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. Let

    A debris-flow monitoring devices and methods bibliography

    No full text
    International audienceDebris-flow monitoring has two functions, warning and modeling. The warning function includes the following parameters: occurrence prediction and detection, proximity sensing, and discharge-estimation. The parameters obtained from debris-flow measurements can deduce a numerical model for creating a hazard map and designing various types of control structures to mitigate the hazards. Many devices and methods of monitoring are tabulated here for comparative study. Some of them are in operation. Advanced comparative studies lead to an improvement in debris-flow monitoring, an integrated system that can be applied to any torrent, and a breakthrough in future developments

    Shock propagation through a bubbly liquid in a deformable tube

    Get PDF
    Shock propagation through a bubbly liquid contained in a deformable tube is considered. Quasi-one-dimensional mixture-averaged flow equations that include fluid–structure interaction are formulated. The steady shock relations are derived and the nonlinear effect due to the gas-phase compressibility is examined. Experiments are conducted in which a free-falling steel projectile impacts the top of an air/water mixture in a polycarbonate tube, and stress waves in the tube material and pressure on the tube wall are measured. The experimental data indicate that the linear theory is incapable of properly predicting the propagation speeds of finite-amplitude waves in a mixture-filled tube; the shock theory is found to more accurately estimate the measured wave speeds

    Activation volumes in CoPtCr-SiO2 perpendicular recording media

    Get PDF
    CoPtCr-SiO2 perpendicular recording media with varying levels of SiO2 were examined by two different methods to determine the activation volume. The first is based on the sweep-rate dependence of the remanence coercivity using Sharrock's equation. The second is based on the measurement of the fluctuation field from time-dependence data, determined using a magneto-optical Kerr effect (MOKE) magnetometer. The values of V-act measured at the coercivity for both methods are almost the same, with the fluctuation field and activation volumes increasing with the SiO2 content. The difference between V-act and the grain volume measured directly from bright-field TEM images decreases as the SiO2 content increases due to the reduction of intergranular exchange coupling. The experimental results indicate that values of V-act obtained from single- and double-layered media are consistent. It was also found that the coercivity and normalized hysteresis loop slope at coercivity varied with SiO2 content, with the coercivity peaking at 8 at % SiO2 (nearly 26 vol% SiO2)

    Modification of Angular Velocity by Inhomogeneous MRI Growth in Protoplanetary Disks

    Full text link
    We have investigated evolution of magneto-rotational instability (MRI) in protoplanetary disks that have radially non-uniform magnetic field such that stable and unstable regions coexist initially, and found that a zone in which the disk gas rotates with a super-Keplerian velocity emerges as a result of the non-uniformly growing MRI turbulence. We have carried out two-dimensional resistive MHD simulations with a shearing box model. We found that if the spatially averaged magnetic Reynolds number, which is determined by widths of the stable and unstable regions in the initial conditions and values of the resistivity, is smaller than unity, the original Keplerian shear flow is transformed to the quasi-steady flow such that more flattened (rigid-rotation in extreme cases) velocity profile emerges locally and the outer part of the profile tends to be super-Keplerian. Angular momentum and mass transfer due to temporally generated MRI turbulence in the initially unstable region is responsible for the transformation. In the local super-Keplerian region, migrations due to aerodynamic gas drag and tidal interaction with disk gas are reversed. The simulation setting corresponds to the regions near the outer and inner edges of a global MRI dead zone in a disk. Therefore, the outer edge of dead zone, as well as the inner edge, would be a favorable site to accumulate dust particles to form planetesimals and retain planetary embryos against type I migration.Comment: 28 pages, 11figures, 1 table, accepted by Ap

    Magnetic systems at criticality: different signatures of scaling

    Get PDF
    Different aspects of critical behaviour of magnetic materials are presented and discussed. The scaling ideas are shown to arise in the context of purely magnetic properties as well as in that of thermal properties as demonstrated by magnetocaloric effect or combined scaling of excess entropy and order parameter. Two non-standard approaches to scaling phenomena are described. The presented concepts are exemplified by experimental data gathered on four representatives of molecular magnets.Comment: 33 pages, 16 figure

    A study of the etapipi channel produced in central pp interactions at 450 GeV/c

    Get PDF
    The reaction pp -> pf (eta pi pi) ps has been studied at 450 GeV/c. There is clear evidence for an a2(1320)pi decay mode of the eta2(1645) and eta2(1870). In addition, there is evidence for an a0(980)pi$ decay mode of both resonances and an f2(1270)eta decay mode of the eta2(1870). No evidence is found for a JPC = 2++ a2(1320)pi wave.Comment: 15 pages, Latex, 4 Figures Branching ratio a2pi /f2 eta correcte
    corecore