10,528 research outputs found
On the Space-Time Symmetries of Non-Commutative Gauge Theories
We study the space-time symmetries and transformation properties of the
non-commutative U(1) gauge theory, by using Noether charges. We carry out our
analysis by keeping an open view on the possible ways could
transform. We conclude that cannot transform under any
space-time transformation since the theory is not invariant under the conformal
transformations, with the only exception of space-time translations. The same
analysis applies to other gauge groups.Comment: 6 pages, RevTe
On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging
In this paper we present a rather extensive error budget for the difference
of the perigees of a pair of supplementary SLR satellites aimed to the
detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to
the abstract, Introduction and Conclusions. References updated, typos
corrected. Equation corrected. To appear in General Relativity and
Gravitatio
Effects of standard and modified gravity on interplanetary ranges
We numerically investigate the impact on the two-body range by several
Newtonian and non-Newtonian dynamical effects for some Earth-planet (Mercury,
Venus, Mars, Jupiter, Saturn) pairs in view of the expected cm-level accuracy
in some future planned or proposed interplanetary ranging operations
(abridged).Comment: LaTex, World Scientific style, 46 pages, 55 figures, 1 table, 57
references. Version in press in International Journal of Modern Physics D
(IJMPD
The relativistic precession of the orbits
The relativistic precession can be quickly inferred from the nonlinear polar
orbit equation without actually solving it.Comment: Accepted for publication in Astrophysics & Space Scienc
Dynamical constraints on some orbital and physical properties of the WD0137-349 A/B binary system
In this paper I deal with the WD0137-349 binary system consisting of a white
dwarf (WD) and a brown dwarf (BD) in a close circular orbit of about 116 min.
I, first, constrain the admissible range of values for the inclination i by
noting that, from looking for deviations from the third Kepler law, the
quadrupole mass moment Q would assume unlikely large values, incompatible with
zero at more than 1-sigma level for i 43 deg. Then, by
conservatively assuming that the most likely values for i are those that
prevent such an anomalous behavior of Q, i.e. those for which the third Kepler
law is an adequate modeling of the orbital period, I obtain i=39 +/- 2 deg.
Such a result is incompatible with the value i=35 deg quoted in literature by
more than 2 sigma. Conversely, it is shown that the white dwarf's mass range
obtained from spectroscopic measurements is compatible with my experimental
range, but not for i=35 deg. As a consequence, my estimate of yields an
orbital separation of a=(0.59 +/- 0.05)R_Sun and an equilibrium temperature of
BD of T_eq=(2087 +/- 154)K which differ by 10% and 4%, respectively, from the
corresponding values for i=35 deg.Comment: LaTex2e, 11 pages, 3 figures, no tables. It refers to gr-qc/0611126
and better clarify the result obtained there. Accepted by Astrophysics and
Space Scienc
Super-ASTROD: Probing primordial gravitational waves and mapping the outer solar system
Super-ASTROD (Super Astrodynamical Space Test of Relativity using Optical
Devices or ASTROD III) is a mission concept with 3-5 spacecraft in 5 AU orbits
together with an Earth-Sun L1/L2 spacecraft ranging optically with one another
to probe primordial gravitational-waves with frequencies 0.1 microHz - 1 mHz,
to test fundamental laws of spacetime and to map the outer solar system. In
this paper we address to its scientific goals, orbit and payload selection, and
sensitivity to gravitational waves.Comment: 7 pages, 1 figure, presented to 7th International LISA Symposium,
16-20 June 2008, Barcelona; submitted to Classical and Quantum Gravity;
presentation improve
A uniform treatment of the orbital effects due to a violation of the Strong Equivalence Principle in the gravitational Stark-like limit
We analytically work out several effects which a violation of the Strong
Equivalence Principle (SEP) induces on the orbital motion of a binary system
constituted of self-gravitating bodies immersed in a constant and uniform
external field. We do not restrict to the small eccentricity limit. Moreover,
we do not select any specific spatial orientation of the external polarizing
field. We explicitly calculate the SEP-induced mean rates of change of all the
osculating Keplerian orbital elements of the binary, the perturbation of the
projection of the binary orbit onto the line-of-sight, the shift of the radial
velocity, and the range and range-rate signatures and as well. We find that the
ratio of the SEP precessions of the node and the inclination of the binary
depends only on and the pericenter of the binary itself, being independent on
both the magnitude and the orientation of the polarizing field, and on the
semimajor axis, the eccentricity and the node of the binary. Our results, which
do not depend on any particular SEP-violating theoretical scheme, can be
applied to quite general astronomical and astrophysical scenarios. They can be
used to better interpret present and future SEP experiments, especially when
several theoretical SEP mechanisms may be involved, and to suitably design new
dedicated tests.Comment: LaTex2e, 14 pages, no figures, no tables, 42 references. To appear in
Classical and Quantum Gravity (CQG
Higher-order corrections to the relativistic perihelion advance and the mass of binary pulsars
We study the general relativistic orbital equation and using a
straightforward perturbation method and a mathematical device first introduced
by d'Alembert, we work out approximate expressions of a bound planetary orbit
in the form of trigonometrical polynomials and the first three terms of the
power series development of the perihelion advance. The results are applied to
a more precise determination of the total mass of the double pulsar J0737-3039.Comment: 8 pages. Accepted for publication in "Astrophysics & Space Science
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
- …
