2,955 research outputs found
HD 4915: A Maunder Minimum Candidate
We study the magnetic activity cycle of HD 4915 using the \ion{Ca}{2} H \& K
emission line strengths measured by Keck I/HIRES spectrograph. The star has
been observed as a part of California Planet Search Program from 2006 to
present. We note decreasing amplitude in the magnetic activity cycle, a pattern
suggesting the star's entry into a Magnetic Grand Minimum (MGM) state,
reminiscent of the Sun's Maunder and Dalton Minima. We recommend further
monitoring of the star to confirm the grand minimum nature of the dynamo, which
would provide insight into the state of the Sun's chromosphere and the global
magnetic field during its grand minima. We also recommend continued
observations of H \& K emission lines, and ground or space based photometric
observations to estimate the sunspot coverage.Comment: To be submitted to AAS Journals; comments welcom
Astrophysical Insights into Radial Velocity Jitter from an Analysis of 600 Planet-search Stars
Radial velocity (RV) detection of planets is hampered by astrophysical processes on the surfaces of stars that induce a stochastic signal, or "jitter," which can drown out or even mimic planetary signals. Here, we empirically and carefully measure the RV jitter of more than 600 stars from the California Planet Search sample on a star by star basis. As part of this process, we explore the activity–RV correlation of stellar cycles and include appendices listing every ostensibly companion-induced signal we removed and every activity cycle we noted. We then use precise stellar properties from Brewer et al. to separate the sample into bins of stellar mass and examine trends with activity and with evolutionary state. We find that RV jitter tracks stellar evolution and that in general, stars evolve through different stages of RV jitter: the jitter in younger stars is driven by magnetic activity, while the jitter in older stars is convectively driven and dominated by granulation and oscillations. We identify the "jitter minimum"—where activity-driven and convectively driven jitter have similar amplitudes—for stars between 0.7 and 1.7 M⊙ and find that more-massive stars reach this jitter minimum later in their lifetime, in the subgiant or even giant phases. Finally, we comment on how these results can inform future RV efforts, from prioritization of follow-up targets from transit surveys like TESS to target selection of future RV surveys
HIV-associated multi-centric Castleman’s disease with multiple organ failure: cuccessful treatment with rituximab
Introduction:
Multicentric Castleman's Disease (MCD), a lymphoproliferative disorder associated with Human Herpes Virus-8 (HHV-8) infection, is increasing in incidence amongst HIV patients. This condition is associated with lymphadenopathy, polyclonal gammopathy, hepato-splenomegaly and systemic symptoms. A number of small studies have demonstrated the efficacy of the anti-CD20 monoclonal antibody, rituximab, in treating this condition.
Case presentation:
We report the case of a 46 year old Zambian woman who presented with pyrexia, diarrhoea and vomiting, confusion, lymphadenopathy, and renal failure. She rapidly developed multiple organ failure following the initiation of treatment of MCD with rituximab. Following admission to intensive care (ICU), she received prompt multi-organ support. After 21 days on the ICU she returned to the haematology medical ward, and was discharged in remission from her disease after 149 days in hospital.
Conclusion:
Rituximab, the efficacy of which has thus far been examined predominantly in patients outside the ICU, in conjunction with extensive organ support was effective treatment for MCD with associated multiple organ failure. There is, to our knowledge, only one other published report of its successful use in an ICU setting, where it was combined with cyclophosphamide, adriamycin and prednisolone. Reports such as ours support the notion that critically unwell patients with HIV and haematological disease can benefit from intensive care
Some Bright Stars with Smooth Continua for Calibrating the Response of High Resolution Spectrographs
When characterizing a high resolution echelle spectrograph, for instance for
precise Doppler work, it is useful to observe featureless sources such as
quartz lamps or hot stars to determine the response of the instrument. Such
sources provide a way to determine the blaze function of the orders,
pixel-to-pixel variations in the detector, fringing in the system, and other
important characteristics. In practice, however, many B or early A stars do not
provide a smooth continuum, whether because they are not rotating rapidly
enough or for some other reason. In fact, we have found that published
rotational velocities and temperatures are not a specific and sensitive guide
to whether a star's continuum will be smooth. A useful resource for observers,
therefore, is a list of "good" hot stars: bright, blue stars known empirically
to have no lines or other spectral features beyond the Balmer series with
minima below 95% of the continuum.
We have compiled a list of such stars visible from Northern Hemisphere
telescopes. This list includes all stars listed in the Yale Bright Star Catalog
(Hoffleit & Jaschek 1991) as being single with V 175 km/s, and
declination > -30, and many other hot stars that we have found useful for
calibration purposes.
The list here of "bad" stars may also be of interest in studies of hot,
slowly rotating stars
Retired A Stars and Their Companions IV. Seven Jovian Exoplanets from Keck Observatory
We report precise Doppler measurements of seven subgiants from Keck
Observatory. All seven stars show variability in their radial velocities
consistent with planet-mass companions in Keplerian orbits. The host stars have
masses ranging from 1.1 < Mstar/Msun < 1.9, radii 3.4 < Rstar/Rsun < 6.1, and
metallicities -0.21 < [Fe/H] < +0.26. The planets are all more massive than
Jupiter (Msini > 1 Mjup) and have semimajor axes > 1 AU. We present
millimagnitude photometry from the T3 0.4m APT at Fairborn observatory for five
of the targets. Our monitoring shows these stars to be photometrically stable,
further strengthening the interpretation of the observed radial velocity
variability. The orbital characteristics of the planets thus far discovered
around former A-type stars are very different from the properties of planets
around dwarf stars of spectral type F, G and K, and suggests that the formation
and migration of planets is a sensitive function of stellar mass. Three of the
planetary systems show evidence of long-term, linear trends indicative of
additional distant companions. These trends, together with the high planet
masses and increased occurrence rate, indicate that A-type stars are very
promising targets for direct imaging surveys.Comment: PASP Accepted, final submission awaiting comments from the communit
Chromospheric Activity of HAT-P-11: an Unusually Active Planet-Hosting K Star
Kepler photometry of the hot Neptune host star HAT-P-11 suggests that its
spot latitude distribution is comparable to the Sun's near solar maximum. We
search for evidence of an activity cycle in the CaII H & K chromospheric
emission -index with archival Keck/HIRES spectra and observations from the
echelle spectrograph on the ARC 3.5 m Telescope at APO. The chromospheric
emission of HAT-P-11 is consistent with a year activity cycle,
which plateaued near maximum during the Kepler mission. In the cycle that we
observed, the star seemed to spend more time near active maximum than minimum.
We compare the normalized chromospheric emission index of
HAT-P-11 with other stars. HAT-P-11 has unusually strong chromospheric emission
compared to planet-hosting stars of similar effective temperature and rotation
period, perhaps due to tides raised by its planet.Comment: 16 pages, 8 figures; accepted to the Astrophysical Journa
Kepler-1656b: a Dense Sub-Saturn With an Extreme Eccentricity
Kepler-1656b is a 5 planet with an orbital period of 32 days initially
detected by the prime Kepler mission. We obtained precision radial velocities
of Kepler-1656 with Keck/HIRES in order to confirm the planet and to
characterize its mass and orbital eccentricity. With a mass of ,
Kepler-1656b is more massive than most planets of comparable size. Its high
mass implies that a significant fraction, roughly 80%, of the planet's total
mass is in high density material such as rock/iron, with the remaining mass in
a low density H/He envelope. The planet also has a high eccentricity of , the largest measured eccentricity for any planet less than 100
. The planet's high density and high eccentricity may be the result of one
or more scattering and merger events during or after the dispersal of the
protoplanetary disk.Comment: 10 pages, 6 figures, published in The Astronomical Journa
The California Planet Survey II. A Saturn-Mass Planet Orbiting the M Dwarf Gl649
We report precise Doppler measurements of the nearby (d = 10.34 pc) M dwarf
Gl649 that reveal the presence of a planet with a minimum mass Msini = 0.328
Mjup in an eccentric (e = 0.30), 598.3 day orbit. Our photometric monitoring
reveals Gl649 to be a new variable star with brightness changes on both
rotational and decadal timescales. However, neither of these timescales are
consistent with the 600-day Doppler signal and so provide strong support for
planetary reflex motion as the best interpretation of the observed radial
velocity variations. Gl649b is only the seventh Doppler-detected giant planet
around an M dwarf. The properties of the planet and host-star therefore
contribute significant information to our knowledge of planet formation around
low-mass stars. We revise and refine the occurrence rate of giant planets
around M dwarfs based on the California Planet Survey sample of low-mass stars
(M* < 0.6 Msun). We find that f = 3.4^{+2.2}_{-0.9}% of stars with M* < 0.6
Msun harbor planets with Msini > 0.3$ Mjup and a < 2.5 AU. When we restrict our
analysis to metal-rich stars with [Fe/H] > +0.2 we find the occurrence rate is
10.7^{+5.9}_{-4.2}%.Comment: 8 pages, 4 figures, 3 tables, PASP accepte
Two Exoplanets Discovered at Keck Observatory
We present two exoplanets detected at Keck Observatory. HD 179079 is a G5
subgiant that hosts a hot Neptune planet with Msini = 27.5 M_earth in a 14.48
d, low-eccentricity orbit. The stellar reflex velocity induced by this planet
has a semiamplitude of K = 6.6 m/s. HD 73534 is a G5 subgiant with a
Jupiter-like planet of Msini = 1.1 M_jup and K = 16 m/s in a nearly circular
4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We
discuss a known, classical bias in measuring eccentricities for orbits with
velocity semiamplitudes, K, comparable to the radial velocity uncertainties.
For exoplanets with periods longer than 10 days, the observed exoplanet
eccentricity distribution is nearly flat for large amplitude systems (K > 80
m/s), but rises linearly toward low eccentricity for lower amplitude systems (K
> 20 m/s).Comment: 8 figures, 6 tables, accepted, Ap
The incorporation of matter into characteristic numerical relativity
A code that implements Einstein equations in the characteristic formulation
in 3D has been developed and thoroughly tested for the vacuum case. Here, we
describe how to incorporate matter, in the form of a perfect fluid, into the
code. The extended code has been written and validated in a number of cases. It
is stable and capable of contributing towards an understanding of a number of
problems in black hole astrophysics.Comment: 15 pages + 4 (eps) figure
- …
