229 research outputs found
Even-odd correlations in capacitance fluctuations of quantum dots
We investigate effects of short range interactions on the addition spectra of
quantum dots using a disordered Hubbard model. A correlation function \cS(q) is
defined on the inverse compressibility versus filling data, and computed
numerically for small lattices. Two regimes of interaction strength are
identified: the even/odd fluctuations regime typical of Fermi liquid ground
states, and a regime of structureless \cS(q) at strong interactions. We
propose to understand the latter regime in terms of magnetically correlated
localized spins.Comment: 3 pages, Revtex, Without figure
Magnetic Ground State of PrLaCeCuO with Varied Oxygen Depletion Probed by Muon Spin Relaxation
The magnetic ground state of an electron-doped cuprate superconductor
PrLaCeCuO () has been
studied by means of muon spin rotation/relaxation (\msr) over a wide variety of
oxygen depletion, . Appearance of weak random magnetism
over entire crystal volume has been revealed by a slow exponential relaxation.
The absence of -dependence for the random magnetism and the multiplet
pattern of muon Knight shift at higher fields strongly suggest that the random
moments are associated with excited Pr ions under crystal electric
field.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp
Weak localization in InSb thin films heavily doped with lead
The paper reports on the investigations of the weak localization (WL) effects
in 3D polycrystalline thin films of InSb. The films are closely compensated
showing the electron concentration n>10^{16} cm^{-3} at the total concentration
of the donor and acceptor type structural defects >10^{18} cm^{-3}. Unless
Pb-doped, the InSb films do not show any measurable or show very small WL
effect at 4.2 K. The Pb-doping to the concentration of the order of 10^{18}
cm^{-3} leads to pronounced WL effects below 7 K. In particular, a clearly
manifested SO scattering is observed. From the comparison of the experimental
data on temperature dependence of the magnetoresistivity and sample resistance
with the WL theory, the temperature dependence of the phase destroying time is
determined. The determination is performed by fitting theoretical terms
obtained from Kawabata's theory to experimental data on magnetoresistance. It
is concluded that the dephasing process is connected to three separate
interaction processes. The first is due to the SO scatterings and is
characterized by temperature-independent relaxation time. The second is
associated with the electron-phonon interaction. The third dephasing process is
characterized by independent on temperature relaxation time tau_c. This
relaxation time is tentatively ascribed to inelastic scattering at extended
structural defects, like grain boundaries. The resulting time dephasing time
shows saturation in its temperature dependence. The temperature dependence of
the resistance of the InSb films can be explained by the electron-electron
interaction for T2 K.Comment: 15 pages with 5 figure
Low-lying continuum structures in B8 and Li8 in a microscopic model
We search for low-lying resonances in the B8 and Li8 nuclei using a
microscopic cluster model and a variational scattering method, which is
analytically continued to complex energies. After fine-tuning the
nucleon-nucleon interaction to get the known 1+ state of B8 at the right
energy, we reproduce the known spectra of the studied nuclei. In addition, our
model predicts a 1+ state at 1.3 MeV in B8, relative to the Be7+p threshold,
whose corresponding pair is situated right at the Li7+n threshold in Li8.
Lacking any experimental evidence for the existence of such states, it is
presently uncertain whether these structures really exist or they are spurious
resonances in our model. We demonstrate that the predicted state in B8, if it
exists, would have important consequences for the understanding of the
astrophysically important Be7(p,gamma)B8 reaction.Comment: 6 pages with 1 figure. The postscript file and more information are
available at http://nova.elte.hu/~csot
Correlation energy of a two-dimensional electron gas from static and dynamic exchange-correlation kernels
We calculate the correlation energy of a two-dimensional homogeneous electron
gas using several available approximations for the exchange-correlation kernel
entering the linear dielectric response of the system.
As in the previous work of Lein {\it et al.} [Phys. Rev. B {\bf 67}, 13431
(2000)] on the three-dimensional electron gas, we give attention to the
relative roles of the wave number and frequency dependence of the kernel and
analyze the correlation energy in terms of contributions from the plane. We find that consistency of the kernel with the electron-pair
distribution function is important and in this case the nonlocality of the
kernel in time is of minor importance, as far as the correlation energy is
concerned. We also show that, and explain why, the popular Adiabatic Local
Density Approximation performs much better in the two-dimensional case than in
the three-dimensional one.Comment: 9 Pages, 4 Figure
Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation
The fully nonlinear response of a many-level tunneling system to a strong
alternating field of high frequency is studied in terms of the
Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent
tunneling current is calculated exactly and its resonance structure is
elucidated. In particular, it is shown that under certain reasonable conditions
on the physical parameters, the Fourier component is sharply peaked at
, where is the spacing between
two levels. This frequency multiplication results from the highly nonlinear
process of photon absorption (or emission) by the tunneling system. It is
also conjectured that this effect (which so far is studied mainly in the
context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from
[email protected], submitted to Phys.Rev.
Quantum Point Contacts and Coherent Electron Focusing
I. Introduction
II. Electrons at the Fermi level
III. Conductance quantization of a quantum point contact
IV. Optical analogue of the conductance quantization
V. Classical electron focusing
VI. Electron focusing as a transmission problem
VII. Coherent electron focusing (Experiment, Skipping orbits and magnetic
edge states, Mode-interference and coherent electron focusing)
VIII. Other mode-interference phenomenaComment: #3 of a series of 4 legacy reviews on QPC'
Exacerbated leishmaniasis caused by a viral endosymbiont can be prevented by immunization with Its viral capsid
Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities
- …
