128 research outputs found

    Josephson Effects in Double-Layer Quantum Hall States

    Full text link
    Under quite plausible assumptions on double-layer quantum Hall states with strong interlayer correlation, we show in general framwork that coherent tunneling of a single electron between two layers is possible. It yields Josephson effects with unit charge tunneling. The origin is that Halperin states in the quantum Hall states are highly degenerate in electron number difference between two layers in the absence of electrons tunneling.Comment: 9 Pages, Revtex Inpress Int.J.Mod.Phys.

    Spontaneous Breakdown of U(1) symmetry in DLCQ without Zero Mode

    Full text link
    We show that the spontaneous breakdown of U(1) symmetry in a Higgs model can be described in discretized light cone formulation even by neglecting zero mode. We obtain correctly the energy of a ground state with the symmetry breakdown. We also show explicitly the presence of a Goldstone mode and its absence when the U(1) symmetry is gauged. In spite of obtaining the favorable results, we lose a merit in the formulation without zero modes that a naive Fock vacuum is the true ground state.Comment: 7 page

    An analytic study towards instabilities of the glasma

    Full text link
    Strong longitudinal color flux fields will be created in the initial stage of high-energy nuclear collisions. We investigate analytically time evolution of such boost-invariant color fields from Abelian-like initial conditions, and next examine stability of the boost-invariant configurations against rapidity dependent fluctuations. We find that the magnetic background field has an instability induced by the lowest Landau level whose amplitude grows exponentially. For the electric background field there is no apparent instability although pair creations due to the Schwinger mechanism should be involved.Comment: 4p, 3figs; poster contribution to QM200

    Does gravitational wave propagate in the five dimensional space-time with Kaluza-Klein monopole?

    Get PDF
    The behavior of small perturbations around the Kaluza-Klein monopole in the five dimensional space-time is investigated. The fact that the odd parity gravitational wave does not propagate in the five dimensional space-time with Kaluza-Klein monopole is found provided that the gravitational wave is constant in the fifth direction.Comment: 10 @ages, LATE

    Spontaneous Magnetization of Axion Domain Wall and Primordial Magnetic Field

    Get PDF
    We show that axion domain walls gain spontaneous magnetization in early universe by trapping either electrons or positrons with their spins polarized. The reason is that the walls produces an attractive potential for these particles. We argue that the wall bounded by an axionic superconducting string leaves a magnetic field after its decay. We obtain a field 1023\sim 10^{-23} Gauss on the scale of horizon at the recombination.Comment: 10 Pages, Revte

    Once again on electromagnetic properties of a domain wall interacting with charged fermions

    Get PDF
    The response to a magnetic flux is considered of the vacuum state of charged Dirac fermions interacting with a domain wall made of a neutral spinless field in (3+1) dimensions with the fermion mass having a phase variation across the wall. It is pointed out that due to simple C parity arguments the spontaneous magnetization for this system is necessarily zero, thus invalidating some claims to the contrary in the literature. The cancellation of the spontaneous magnetization is explicitly demonstrated in a particular class of models. The same calculation produces a general formula for the electric charge density induced by the magnetic flux -- an effect previously discussed in the literature for axionic domain walls. The distribution of the induced charge is calculated in specific models.Comment: 15 page

    Magnetic condensation, Abelian dominance and instability of Savvidy vacuum

    Full text link
    We show that a certain type of color magnetic condensation originating from magnetic monopole configurations is sufficient to provide the mass for off-diagonal gluons in the SU(2) Yang-Mills theory under the Cho--Faddeev--Niemi decomposition. We point out that the generated gluon mass can cure the instability of the Savvidy vacuum. In fact, such a novel type of magnetic condensation is shown to occur by calculating the effective potential. This enables us to explain the infrared Abelian dominance and monopole dominance by way of a non-Abelian Stokes theorem, which suggests the dual superconductivity picture of quark confinement. Finally, we discuss the implication to the Faddeev-Skyrme model with knot soliton as a low-energy effective theory of Yang-Mills theory.Comment: 14 pages, 2 figures; a version accepted in Phys. Lett. B, Main changes in sections 2.5 and 2.6. in order to explain the crucial idea bette

    Skyrmion \leftrightarrow pseudoSkyrmion Transition in Bilayer Quantum Hall States at ν=1\nu =1

    Full text link
    Bilayer quantum Hall states at ν=1\nu =1 have been demonstrated to possess a distinguished state with interlayer phase coherence. The state has both excitations of Skyrmion with spin and pseudoSkyrmion with pseudospin. We show that Skyrmion \leftrightarrow pseudoSkyrmion transition arises in the state by changing imbalance between electron densities in both layers; PseudoSkyrmion is realized at balance point, while Skyrmion is realized at large imbalance. The transition can be seen by observing the dependence of activation energies on magnetic field parallel to the layers.Comment: 12 pages, no figure

    Ferromagnetic Domain Wall and Primeval Magnetic Field

    Full text link
    We show that coherent magnetic field is generated spontaneously when a large domain wall is created in the early universe. It is caused by two dimensional massless fermions bounded to the domain wall soliton. We point out that the magnetic field is a candidate of primordial magnetic field.Comment: zero point energy missed in previous version is include

    Quark and pion condensation in a chromomagnetic background field

    Full text link
    The general features of quark and pion condensation in dense quark matter with flavor asymmetry have been considered at finite temperature in the presence of a chromomagnetic background field modelling the gluon condensate. In particular, pion condensation in the case of a constant abelian chromomagnetic field and zero temperature has been studied both analytically and numerically. Under the influence of the chromomagnetic background field the effective potential of the system is found to have a global minimum for a finite pion condensate even for small values of the effective quark coupling constant. In the strong field limit, an effective dimensional reduction has been found to take place.Comment: 17 pages, 6 figure
    corecore