13,468 research outputs found
Secondary and compound concentrators for parabolic dish solar thermal power systems
A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat
Testing modified gravity with globular cluster velocity dispersions
Globular clusters (GCs) in the Milky Way have characteristic velocity
dispersions that are consistent with the predictions of Newtonian gravity, and
may be at odds with Modified Newtonian Dynamics (MOND). We discuss a modified
gravity (MOG) theory that successfully predicts galaxy rotation curves, galaxy
cluster masses and velocity dispersions, lensing, and cosmological
observations, yet produces predictions consistent with Newtonian theory for
smaller systems, such as GCs. MOG produces velocity dispersion predictions for
GCs that are independent of the distance from the galactic center, which may
not be the case for MOND. New observations of distant GCs may produce strong
criteria that can be used to distinguish between competing gravitational
theories.Comment: 4 pages, 2 figures; accepted for publication in Ap
Photon density of states for deformed surfaces
A new approach to the Helmholtz spectrum for arbitrarily shaped boundaries
and a rather general class of boundary conditions is introduced. We derive the
boundary induced change of the density of states in terms of the free Green's
function from which we obtain both perturbative and non-perturbative results
for the Casimir interaction between deformed surfaces. As an example, we
compute the lateral electrodynamic Casimir force between two corrugated
surfaces over a wide parameter range. Universal behavior, fixed only by the
largest wavelength component of the surface shape, is identified at large
surface separations. This complements known short distance expansions which are
also reproduced.Comment: 8 pages, J Phys A Special Issue QFEXT0
Low frequency measurements of synchrotron absorbing HII regions and modeling of observed synchrotron emissivity
Cosmic rays (CRs) and magnetic fields are dynamically important components in
the Galaxy, and their energy densities are comparable to that of the turbulent
interstellar gas. The interaction of CRs and Galactic magnetic fields produces
synchrotron radiation clearly visible in the radio regime. Detailed
measurements of synchrotron radiation averaged over the line-of-sight (LOS),
so-called synchrotron emissivities, can be used as a tracer of the CR density
and Galactic magnetic field (GMF) strength. Our aim is to model the synchrotron
emissivity in the Milky Way using a 3 dimensional dataset instead of
LOS-integrated intensity maps on the sky. Using absorbed HII regions we can
measure the synchrotron emissivity over a part of the LOS through the Galaxy,
changing from a 2 dimensional to a 3 dimensional view. Performing these
measurements on a large scale is one of the new applications of the window
opened by current low frequency arrays. Using various simple axisymmetric
emissivity models and a number of GMF-based emissivity models we can simulate
the synchrotron emissivities and compare them to the observed values in the
catalog. We present a catalog of low-frequency absorption measurements of HII
regions, their distances and electron temperatures, compiled from literature.
These data show that the axisymmetric emissivity models are not complex enough,
but the GMF-based emissivity models deliver a reasonable fit. These models
suggest that the fit can be improved by either an enhanced synchrotron
emissivity in the outer reaches of the Milky Way, or an emissivity drop near
the Galactic center. State-of-the-art GMF models plus a constant CR density
model cannot explain low-frequency absorption measurements, but the fits
improved with slight (ad-hoc) adaptations. It is clear that more detailed
models are needed, but the current results are very promising.Comment: 14 pages, 9 figures, accepted for publication in A&
R=100,000 Spectroscopy of Photodissociation Regions: H2 Rotational Lines in the Orion Bar
Ground state rotational lines of H2 are good temperature probes of moderately
hot (200-1000 K) gas. The low A-values of these lines result in low critical
densities while ensuring that the lines are optically thin. ISO observations of
H2 rotational lines in PDRs reveal large quantities of warm gas that are
difficult to explain via current models, but the spatial resolution of ISO does
not resolve the temperature structure of the warm gas. We present and discuss
high spatial resolution observations of H2 rotational line emission from the
Orion Bar.Comment: 4 pages, 1 figure, Proceedings of the ESO Workshop on High Resolution
Infrared Spectroscop
- …
