67 research outputs found
Wildfire threshold detection and progression monitoring using an improved radar vegetation index in California
To address the recent increase in wildfire severity and incidence, as well as the subsequent financial and physical costs, forest managers and wildland firefighting agencies rely on remotely sensed products for better decision-making and mitigation efforts. To address the remote sensing needs of these agencies, which include high spatial resolution, immunity to atmospheric and solar illumination effects, and day/night capabilities, the use of synthetic aperture radar (SAR) is under investigation for application in current and upcoming systems for all phases of a wildfire. Focusing on the active phase, a method for monitoring wildfire activity is presented based on changes in the radar vegetation index (RVI). L-band backscatter measurements from NASA/JPL’s UAVSAR instrument are used to obtain RVI images on multiple dates during the 2020 Bobcat (located in Southern CA, USA) and Hennessey (located in Northern CA, USA) fires and the 2021 Caldor (located in the Sierra Nevada region of CA, USA) fire. Changes in the RVI between measurement dates of a single fire are then compared to indicators of fire activity such as ancillary GIS-based burn extent perimeters and the Landsat 8-based difference normalized burn ratio (dNBR). An RVI-based wildfire “burn” detector/index is then developed by thresholding the RVI change. A combination of the receiver operating characteristic (ROC) curves and F1 scores for this detector are used to derive change detection thresholds at varying spatial resolutions. Six repeat-track UAVSAR lines over the 2020 fires are used to determine appropriate threshold values, and the performance is subsequently investigated for the 2021 Caldor fire. The results show good performance for the Bobcat and Hennessey fires at 100 m resolution, with optimum probability of detections of 67.89% and 71.98%, F1 scores of 0.6865 and 0.7309, and Matthews correlation coefficients of 0.5863 and 0.6207, respectively, with an overall increase in performance for all metrics as spatial resolution becomes coarser. The results for pixels identified as “burned” compare well with other fire indicators such as soil burn severity, known progression maps, and post-fire agency publications. Good performance is also observed for the Caldor fire where the percentage of pixels identified as burned within the known fire perimeters ranges from 37.87% at ~5 m resolution to 88.02% at 500 m resolution, with a general increase in performance as spatial resolution increases. All detections for Caldor show dense collections of burned pixels within the known perimeters, while pixels identified as burned that lie outside of the know perimeters have a sparse spatial distribution similar to noise that decreases as spatial resolution is degraded. The Caldor results also align well with other fire indicators such as soil burn severity and vegetation disturbance
Long-term and high-resolution global time series of brightness temperature from copula-based fusion of SMAP enhanced and SMOS data
Long and consistent soil moisture time series at adequate spatial resolution are key to foster the application of soil moisture observations and remotely-sensed products in climate and numerical weather prediction models. The two L-band soil moisture satellite missions SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) are able to provide soil moisture estimates on global scales and in kilometer accuracy. However, the SMOS data record has an appropriate length of 7.5 years since late 2009, but with a coarse resolution of 25km only. In contrast, a spatially-enhanced SMAP product is available at a higher resolution of 9 km, but for a shorter time period (since March 2015 only). Being the fundamental observable from passive microwave sensors, reliable brightness temperatures (Tbs) are a mandatory precondition for satellite-based soil moisture products. We therefore develop, evaluate and apply a copula-based data fusion approach for combining SMAP Enhanced (SMAP_E) and SMOS brightness Temperature (Tb) data. The approach exploits both linear and non-linear dependencies between the two satellite-based Tb products and allows one to generate conditional SMAP_E-like random samples during the pre-SMAP period. Our resulting global Copula-combined SMOS-SMAP_E (CoSMOP) Tbs are statistically consistent with SMAP_E brightness temperatures, have a spatial resolution of 9km and cover the period from 2010 to 2018. A comparison with Service Soil Climate Analysis Network (SCAN)-sites over the Contiguous United States (CONUS) domain shows that the approach successfully reduces the average RMSE of the original SMOS data by 15%. At certain locations, improvements of 40% and more can be observed. Moreover, the median NSE can be enhanced from zero to almost 0.5. Hence, CoSMOP, which will be made freely available to the public, provides a first step towards a global, long-term, high-resolution and multi-sensor brightness temperature product, and thereby, also soil moisture
Water dynamics in the soil-plant-atmosphere continuum based on time-lagged correlations of satellite data
peer reviewe
HIGH-RESOLUTION ENHANCED PRODUCT BASED ON SMAP ACTIVE-PASSIVE APPROACH USING SENTINEL 1A AND 1B SAR DATA
SMAP project released a new enhanced high-resolution (3km) soil moisture active-passive product. This product is obtained by combining the SMAP radiometer data and the Sentinel-1A and -1B Synthetic Aperture Radar (SAR) data. The approach used for this product draws heavily from the heritage SMAP active-passive algorithm. Modifications in the SMAP active-passive algorithm are done to accommodate the Copernicus Program’s Sentinel-1A and -1B multi-angular C-band SAR data. Assessment of the SMAP and Sentinel active-passive algorithm has been conducted and results show feasibility of estimating surface soil moisture at high-resolution in regions with low vegetation density (∼ < 3 kg m−2). The beta version of this product is released to public on Nov 1st, 2017. This high resolution (3 km) soil moisture product is useful for agriculture, flood mapping, watershed/rangeland management, and ecological/hydrological applications
RETRIEVAL OF FOREST WATER POTENTIAL FROM L-BAND VEGETATION OPTICAL DEPTH
peer reviewedA retrieval methodology for forest water potential from ground-based L-band radiometry is proposed. It contains the estimation of the gravimetric and the relative water content of a forest stand and tests in situ- and model-based functions to transform these estimates into forest water potential. The retrieval is based on vegetation optical depth data from a tower-based experiment of the SMAPVEX 19-21 campaign for the period from April to October 2019 at Harvard Forest, MA, USA. In addition, comparison and validation with in situ measurements on leaf and xylem water potential as well as on leaf wetness and complex permittivity are foreseen to understand limitations and potentials of the proposed approach. As a first result the radiometer-based water potential estimates of the forest stand are concurrent in time and similar in value with their in situ (xylem) counterparts from single trees in the radiometer footprint
Assessing evapotranspiration dynamics across central Europe in the context of land-atmosphere drivers
The ScaleX campaign: scale-crossing land-surface and boundary layer processes in the TERENO-preAlpine observatory
- …
