134 research outputs found

    Affirmed Crowd Sensor Selection based Cooperative Spectrum Sensing

    Get PDF
    The Cooperative Spectrum sensing model is gaining importance among the cognitive radio network sharing groups. While the crowd-sensing model (technically the cooperative spectrum sensing) model has positive developments, one of the critical challenges plaguing the model is the false or manipulated crowd sensor data, which results in implications for the secondary user’s network. Considering the efficacy of the spectrum sensing by crowd-sensing model, it is vital to address the issues of falsifications and manipulations, by focusing on the conditions of more accurate determination models. Concerning this, a method of avoiding falsified crowd sensors from the process of crowd sensors centric cooperative spectrum sensing has portrayed in this article. The proposal is a protocol that selects affirmed crowd sensor under diversified factors of the decision credibility about spectrum availability. An experimental study is a simulation approach that evincing the competency of the proposal compared to the other contemporary models available in recent literature

    CNN and Transfer Learning Methods for Enhanced Dermatological Disease Detection

    Get PDF
    Since skin diseases generally badly affect lives, the earlier and more accurate the diagnosis, the better the chances of effective treatment and a better prognosis. Deep learning applications, especially CNNs, has revolutionized the domain of disease classification, significantly increasing the accuracy of diagnoses for such common conditions and facilitating early interventions. The huge success behind the ongoing project motivated advancements of the developing in CNN techniques towards detection of skin disease by using the concept of Transfer Learning. So, the older models, which had employed it for detecting Eczema and Psoriasis based on the architectures involving deep CNNs. The Inception ResNet v2 architecture improved the accuracy of that model, with some practical implementations via smartphone integration and web server integration. Some of those innovations are as follows in our project. The earlier work used different CNN architectures. Our approach involved Transfer Learning with a pre-trained ResNet50 model to try to improve performance and efficiency using features learned from large-scale datasets. This reduce the complexity and enhance the accuracy. Besides Transfer Learning adaptation, our project encompasses elaborate preprocessing techniques like resizing, normalization, and data augmentation in fine-tuning the dataset for further model fine-tuning. It has 97.6% accuracy, 95% precision, 99.4% recall, and 97.4% F1-score. rad-CAM techniques have been employed to visualize and interpret model predictions. This final model has been a pragmatic and accessible tool for early detection and diagnosis of skin disease. The feature here is an attempt to provide a more accurate, efficient, and user-friendly diagnostic solution through the incorporation of advanced methods of Transfer Learning and visualization

    Influence of Stefan blowing on nanofluid flow submerged in microorganisms with leading edge accretion or ablation

    Get PDF
    The unsteady forced convective boundary layer flow of viscous incompressible fluid containing both nanoparticles and gyrotactic microorganisms, from a flat surface with leading edge accretion (or ablation), is investigated theoretically. Utilizing appropriate similarity transformations for the velocity, temperature, nanoparticle volume fraction and motile microorganism density, the governing conservation equations are rendered into a system of coupled, nonlinear, similarity ordinary differential equations. These equations, subjected to imposed boundary conditions, are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical method in the MAPLE symbolic software. Good agreement between our computations and previous solutions is achieved. The effect of selected parameters on flow velocity, temperature, nano-particle volume fraction (concentration) and motile microorganism density function is investigated. Furthermore, tabular solutions are included for skin friction, wall heat transfer rate, nano-particle mass transfer rate and microorganism transfer rate. Applications of the study arise in advanced micro-flow devices to assess nanoparticle toxicity

    CNN and Transfer Learning methods for enhanced dermatological disease detection

    Get PDF
    Since skin diseases generally badly affect lives, the earlier and more accurate the diagnosis, the better the chances of effective treatment and a better prognosis. Deep learning applications, especially CNNs, has revolutionized the domain of disease classification, significantly increasing the accuracy of diagnoses for such common conditions and facilitating early interventions. The huge success behind the ongoing project motivated advancements of the developing in CNN techniques towards detection of skin disease by using the concept of Transfer Learning. So, the older models, which had employed it for detecting Eczema and Psoriasis based on the architectures involving deep CNNs. The Inception ResNet v2 architecture improved the accuracy of that model, with some practical implementations via smartphone integration and web server integration. Some of those innovations are as follows in our project. The earlier work used different CNN architectures. Our approach involved Transfer Learning with a pre-trained ResNet50 model to try to improve performance and efficiency using features learned from large-scale datasets. This reduce the complexity and enhance the accuracy. Besides Transfer Learning adaptation, our project encompasses elaborate preprocessing techniques like resizing, normalization, and data augmentation in fine-tuning the dataset for further model fine-tuning. It has 97.6% accuracy, 95% precision, 99.4% recall, and 97.4% F1-score. rad-CAM techniques have been employed to visualize and interpret model predictions. This final model has been a pragmatic and accessible tool for early detection and diagnosis of skin disease. The feature here is an attempt to provide a more accurate, efficient, and user-friendly diagnostic solution through the incorporation of advanced methods of Transfer Learnin3g and visualization

    Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk

    Get PDF
    Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.</p

    Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis.

    Get PDF
    Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation

    Structural covariance network topology in individuals at clinical high risk for psychosis: the ENIGMA-CHR Study

    Get PDF
    Brain network architecture is anticipated to influence future grey matter loss in individuals at Clinical High Risk (CHR) for psychosis. However, existing studies on grey matter structural network properties in CHR are scarce and constrained by small sample sizes. Here, we examined network topology differences comparing a) CHR versus healthy controls (HC); b) CHR who transitioned to psychosis (CHR-T) versus those who did not (CHR-NT); and c) different subsyndromes. We included structural scans from 1842 CHR individuals and 1417 HC individuals from 31 sites within the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium. At the global level, CHR individuals exhibited lower structural covariance (q < 0.001; Cohen's d = 0.164) and less optimal structural network configuration than HC (lower global efficiency and clustering coefficient, d = 0.100,0.087, qs <= 0.027). Though no global difference between CHR-T and CHR-NT, network distinctiveness of the frontal and temporal surface area networks was higher in CHR-T than CHR-NT (d = 0.223,0.237) and HC (d = 0.208,0.219) (qs < 0.001). Network distinctiveness of the frontal cortical thickness network was lower in CHR-T (d = 0.218, q < 0.001) than CHR-NT and HC (d = 0.165, q < 0.001). Importantly, higher network distinctiveness was associated with worse positive symptoms in CHR-NT (frontal surface area, q = 0.008, R2 = 0.013) and at trend with worse negative symptoms in CHR-T (frontal thickness, q = 0.063, R2 = 0.049). Further, the brief intermittent psychotic syndrome subgroup showed more severe network alterations. Together, brain structural networks inform symptoms and the risk of transition to psychosis in CHR individuals

    Normative modeling of brain morphometry in clinical high risk for psychosis

    Get PDF
    Importance The lack of robust neuroanatomical markers of psychosis risk has been traditionally attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical measures in individuals at psychosis risk may be nested within the range observed in healthy individuals. Objective To quantify deviations from the normative range of neuroanatomical variation in individuals at clinical high risk for psychosis (CHR-P) and evaluate their overlap with healthy variation and their association with positive symptoms, cognition, and conversion to a psychotic disorder. Design, Setting, and Participants This case-control study used clinical-, IQ-, and neuroimaging software (FreeSurfer)–derived regional measures of cortical thickness (CT), cortical surface area (SA), and subcortical volume (SV) from 1340 individuals with CHR-P and 1237 healthy individuals pooled from 29 international sites participating in the Enhancing Neuroimaging Genetics Through Meta-analysis (ENIGMA) Clinical High Risk for Psychosis Working Group. Healthy individuals and individuals with CHR-P were matched on age and sex within each recruitment site. Data were analyzed between September 1, 2021, and November 30, 2022. Main Outcomes and Measures For each regional morphometric measure, deviation scores were computed as z scores indexing the degree of deviation from their normative means from a healthy reference population. Average deviation scores (ADS) were also calculated for regional CT, SA, and SV measures and globally across all measures. Regression analyses quantified the association of deviation scores with clinical severity and cognition, and 2-proportion z tests identified case-control differences in the proportion of individuals with infranormal (z &lt; −1.96) or supranormal (z &gt; 1.96) scores. Results Among 1340 individuals with CHR-P, 709 (52.91%) were male, and the mean (SD) age was 20.75 (4.74) years. Among 1237 healthy individuals, 684 (55.30%) were male, and the mean (SD) age was 22.32 (4.95) years. Individuals with CHR-P and healthy individuals overlapped in the distributions of the observed values, regional z scores, and all ADS values. For any given region, the proportion of individuals with CHR-P who had infranormal or supranormal values was low (up to 153 individuals [&lt;11.42%]) and similar to that of healthy individuals (&lt;115 individuals [&lt;9.30%]). Individuals with CHR-P who converted to a psychotic disorder had a higher percentage of infranormal values in temporal regions compared with those who did not convert (7.01% vs 1.38%) and healthy individuals (5.10% vs 0.89%). In the CHR-P group, only the ADS SA was associated with positive symptoms (β = −0.08; 95% CI, −0.13 to −0.02; P = .02 for false discovery rate) and IQ (β = 0.09; 95% CI, 0.02-0.15; P = .02 for false discovery rate). Conclusions and Relevance In this case-control study, findings suggest that macroscale neuromorphometric measures may not provide an adequate explanation of psychosis risk

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced
    corecore