139 research outputs found
The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample
We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia
supernovae SNe Ia from the HST Cluster Supernova Survey. The SNe Ia were
discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe
Ia pass our strict selection cuts and are used in combination with the world's
sample of SNe Ia to derive the best current constraints on dark energy. Ten of
our new SNe Ia are beyond redshift , thereby nearly doubling the
statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed
analysis corrects for the recently identified correlation between SN Ia
luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count
rates appropriate for very distant SNe Ia. Adding these supernovae improves the
best combined constraint on the dark energy density \rho_{DE}(z) at redshifts
1.0 < z < 1.6 by 18% (including systematic errors). For a LambdaCDM universe,
we find \Omega_\Lambda = 0.724 +0.015/-0.016 (68% CL including systematic
errors). For a flat wCDM model, we measure a constant dark energy
equation-of-state parameter w = -0.985 +0.071/-0.077 (68% CL). Curvature is
constrained to ~0.7% in the owCDM model and to ~2% in a model in which dark
energy is allowed to vary with parameters w_0 and w_a. Tightening further the
constraints on the time evolution of dark energy will require several
improvements, including high-quality multi-passband photometry of a sample of
several dozen z>1 SNe Ia. We describe how such a sample could be efficiently
obtained by targeting cluster fields with WFC3 on HST.Comment: 27 pages, 11 figures. Submitted to ApJ. This first posting includes
updates in response to comments from the referee. See
http://www.supernova.lbl.gov for other papers in the series pertaining to the
HST Cluster SN Survey. The updated supernova Union2.1 compilation of 580 SNe
is available at http://supernova.lbl.gov/Unio
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
Bright Strongly Lensed Galaxies at Redshift z~ 6-7 behind the Clusters Abell 1703 and CL0024+161
We report on the discovery of three bright, strongly-lensed objects behind
Abell 1703 and CL0024+16 from a dropout search over 25 square arcminutes of
deep NICMOS data, with deep ACS optical coverage. They are undetected in the
deep ACS images below 8500 A and have clear detections in the J and H bands.
Fits to the ACS, NICMOS and IRAC data yield robust photometric redshifts in the
range z~6-7 and largely rule out the possibility that they are low-redshift
interlopers. All three objects are extended, and resolved into a pair of bright
knots. The bright i-band dropout in Abell 1703 has an H-band AB magnitude of
23.9, which makes it one of the brightest known galaxy candidates at z>5.5. Our
model fits suggest a young, massive galaxy only ~ 60 million years old with a
mass of ~ 1E10 solar mass. The dropout galaxy candidates behind CL0024+16 are
separated by 2.5" (~ 2 kpc in the source plane), and have H-band AB magnitudes
of 25.0 and 25.6. Lensing models of CL0024+16 suggest that the objects have
comparable intrinsic magnitudes of AB ~ 27.3, approximately one magnitude
fainter than L* at z~6.5. Their similar redshifts, spectral energy
distribution, and luminosities, coupled with their very close proximity on the
sky, suggest that they are spatially associated, and plausibly are physically
bound. Combining this sample with two previously reported, similarly magnified
galaxy candidates at z~6-8, we find that complex systems with dual nuclei may
be a common feature of high-redshift galaxies.Comment: 34 pages, 9 figure
The Hubble Space Telescope Cluster Supernova Survey: III. Correlated Properties of Type Ia Supernovae and Their Hosts at 0.9 < z < 1.46
Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble
Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed
SNe Ia in the GOODS fields, we search for correlations between the properties
of SNe and their host galaxies at high redshift. We use galaxy color and
quantitative morphology to determine the red sequence in 25 clusters and
develop a model to distinguish passively evolving early-type galaxies from
star-forming galaxies in both clusters and the field. With this approach, we
identify six SN Ia hosts that are early-type cluster members and eleven SN Ia
hosts that are early-type field galaxies. We confirm for the first time at
z>0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly
than SNe Ia hosted by late-type galaxies. We also show that the two samples of
hosts produce SNe Ia with similar color distributions. The relatively simple
spectral energy distributions (SEDs) expected for passive galaxies enable us to
measure stellar masses of early-type SN hosts. In combination with stellar mass
estimates of late-type GOODS SN hosts from Thomson & Chary (2011), we
investigate the correlation of host mass with Hubble residual observed at lower
redshifts. Although the sample is small and the uncertainties are large, a hint
of this relation is found at z>0.9. By simultaneously fitting the average
cluster galaxy formation history and dust content to the red-sequence scatters,
we show that the reddening of early-type cluster SN hosts is likely E(B-V) <~
0.06. The similarity of the field and cluster early-type host samples suggests
that field early-type galaxies that lie on the red sequence may also be
minimally affected by dust. Hence, the early-type hosted SNe Ia studied here
occupy a more favorable environment to use as well-characterized high-redshift
standard candles than other SNe Ia.Comment: 37 pages, 15 figure
Reduced Physiological Complexity in Robust Elderly Adults with the APOE ε4 Allele
BACKGROUND:It is unclear whether the loss of physiological complexity during the aging process is due to genetic variations. The APOE gene has been studied extensively in regard to its relationship with aging-associated medical illness. We hypothesize that diminished physiological complexity, as measured by heart rate variability, is influenced by polymorphisms in the APOE allele among elderly individuals. METHODOLOGY/PRINCIPAL FINDINGS:A total of 102 robust, non-demented, elderly subjects with normal functions of daily activities participated in this study (97 males and 5 females, aged 79.2+/-4.4 years, range 72-92 years). Among these individuals, the following two APOE genotypes were represented: epsilon4 non-carriers (n = 87, 85.3%) and epsilon4 carriers (n = 15, 14.7%). Multi-scale entropy (MSE), an analysis used in quantifying complexity for nonlinear time series, was employed to analyze heart-rate dynamics. Reduced physiological complexity, as measured by MSE, was significantly associated with the presence of the APOE epsilon4 allele in healthy elderly subjects, as compared to APOE epsilon4 allele non-carriers (24.6+/-5.5 versus 28.9+/-5.2, F = 9.429, p = 0.003, respectively). CONCLUSIONS/SIGNIFICANCE:This finding suggests a role for the APOE gene in the diminished physiological complexity seen in elderly populations
Null Genotypes of GSTM1 and GSTT1 Contribute to Risk of Cervical Neoplasia: An Evidence-Based Meta-Analysis
SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background
Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages.
Methods
Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023.
Findings
Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia.
Interpretation
The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC
- …
