152,056 research outputs found
Origins of Hidden Sector Dark Matter I: Cosmology
We present a systematic cosmological study of a universe in which the visible
sector is coupled, albeit very weakly, to a hidden sector comprised of its own
set of particles and interactions. Assuming that dark matter (DM) resides in
the hidden sector and is charged under a stabilizing symmetry shared by both
sectors, we determine all possible origins of weak-scale DM allowed within this
broad framework. We show that DM can arise only through a handful of
mechanisms, lending particular focus to Freeze-Out and Decay and Freeze-In, as
well as their variations involving late time re-annihilations of DM and DM
particle anti-particle asymmetries. Much like standard Freeze-Out, where the
abundance of DM depends only on the annihilation cross-section of the DM
particle, these mechanisms depend only on a very small subset of physical
parameters, many of which may be measured directly at the LHC. In particular,
we show that each DM production mechanism is associated with a distinctive
window in lifetimes and cross-sections for particles which may be produced in
the near future. We evaluate prospects for employing the LHC to definitively
reconstruct the origin of DM in a companion paper.Comment: 32 pages, 19 figures; v2: references added, published versio
Recommended from our members
A critical analysis of COA research.
Five experts respected for their significant contributions to the scientific literature on children of alcoholics (COA's) offer their perspectives in a panel discussion format. The panel members reflect on the historical roots of COA research and comment on its current status and future direction. Enriched by the panelists' variety of backgrounds, research interests, and approaches, the discussion emphasizes the need to consider multiple variables that influence the risk for alcoholism among COA's
Operational significance of the deviation equation in relativistic geodesy
Deviation equation: Second order differential equation for the 4-vector which
measures the distance between reference points on neighboring world lines in
spacetime manifolds.
Relativistic geodesy: Science representing the Earth (or any planet),
including the measurement of its gravitational field, in a four-dimensional
curved spacetime using differential-geometric methods in the framework of
Einstein's theory of gravitation (General Relativity).Comment: 9 pages, 4 figures, contribution to the "Encyclopedia of Geodesy".
arXiv admin note: text overlap with arXiv:1811.1047
Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance
Crop rotation has been a valuable technique for control of Diabrotica virgifera virgifera for almost a century. However, during the last two decades, crop rotation has ceased to be effective in an expanding area of the US corn belt. This failure appears to be due to a change in the insect's oviposition behaviour, which, in all probability, has an underlying genetic basis. A preliminary genome scan using 253 amplified fragment-length polymorphism (AFLP) markers sought to identify genetic variation associated with the circumvention of crop rotation. Samples of D. v. virgifera from east-central Illinois, where crop rotation is ineffective, were compared with samples from Iowa at locations that the behavioural variant has yet to reach. A single AFLP marker showed signs of having been influenced by selection for the circumvention of crop rotation. However, this marker was not diagnostic. The lack of markers strongly associated with the trait may be due to an insufficient density of marker coverage throughout the genome. A weak but significant general heterogeneity was observed between the Illinois and Iowa samples at microsatellite loci and AFLP markers. This has not been detected in previous population genetic studies of D. v. virgifera and may indicate a reduction in gene flow between variant and wild-type beetles
Loss of strength in Ni3Al at elevated temperatures
Stress decrease above the stress peak temperature (750 K) is studied in h123i single crystals of Ni3(Al, 3 at.% Hf ). Two thermally activated deformation mechanisms are evidenced on the basis of stress relaxation and strain rate change experiments. From 500 to 1070 K, the continuity of the activation volume/temperature curves reveals a single mechanism of activation enthalpy 3.8 eV/atom and volume 90 b3 at 810K with an athermal stress of 330 MPa. Over the very same temperature interval, impurity or solute diffusion towards dislocation cores is evidenced
through serrated yielding, peculiar shapes of stress–strain curves while changing the rate of straining and stress relaxation experiments. This complicates the
identification of the deformation mechanism, which is likely connected with cube glide. From 1070 to 1270 K, the high-temperature mechanism has an activation
enthalpy and volume of 4.8 eV/atom and 20 b3, respectively, at 1250 K
Split Leverage: Attacking the Condentiality of Linked Databases by Partitioning
This paper considers the risk of disclosure in linked databases when statistical analysis of micro-data is permitted. The risk of dis- closure needs to be balanced against the utility of the linked data. The current work specifically considers the disclosure risks in permit- ting regression analysis to be performed on linked data. A new attack based on partitioning of the database is presented
Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search
The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a
general technique for constructing a data structure to answer approximate near
neighbor queries by using a distribution over locality-sensitive
hash functions that partition space. For a collection of points, after
preprocessing, the query time is dominated by evaluations
of hash functions from and hash table lookups and
distance computations where is determined by the
locality-sensitivity properties of . It follows from a recent
result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive
hash functions can be reduced to , leaving the query time to be
dominated by distance computations and
additional word-RAM operations. We state this result as a general framework and
provide a simpler analysis showing that the number of lookups and distance
computations closely match the Indyk-Motwani framework, making it a viable
replacement in practice. Using ideas from another locality-sensitive hashing
framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of
additional word-RAM operations to .Comment: 15 pages, 3 figure
- …
