38,556 research outputs found

    Onset of unsteady horizontal convection in rectangle tank at Pr=1Pr=1

    Full text link
    The horizontal convection within a rectangle tank is numerically simulated. The flow is found to be unsteady at high Rayleigh numbers. There is a Hopf bifurcation of RaRa from steady solutions to periodic solutions, and the critical Rayleigh number RacRa_c is obtained as Rac=5.5377×108Ra_c=5.5377\times 10^8 for the middle plume forcing at Pr=1Pr=1, which is much larger than the formerly obtained value. Besides, the unstable perturbations are always generated from the central jet, which implies that the onset of instability is due to velocity shear (shear instability) other than thermally dynamics (thermal instability). Finally, Paparella and Young's [J. Fluid Mech. 466 (2002) 205] first hypotheses about the destabilization of the flow is numerically proved, i.e. the middle plume forcing can lead to a destabilization of the flow.Comment: 4pages, 6 figures, extension of Chin. Phys. Lett. 2008, 25(6), in pres

    B\to X_s\gamma, X_s l^+ l^- decays and constraints on the mass insertion parameters in the MSSM

    Full text link
    In this paper, we study the upper bounds on the mass insertion parameters (δABq)ij(\delta^{q}_{AB})_{ij} in the minimal supersymmetric standard model (MSSM). We found that the information from the measured branching ratio of BXsl+lB \to X_s l^+ l^- decay can help us to improve the upper bounds on the mass insertions parameters \left (\delta^{u,d}_{AB})_{3j,i3}. Some regions allowed by the data of Br(BXsγ)Br(B \to X_s \gamma) are excluded by the requirement of a SM-like C7γ(mb)C_{7\gamma}(m_b) imposed by the data of Br(BXsl+l)Br(B \to X_s l^+ l^-).Comment: 16 pages, 5 eps figure files, typos remove

    Certain Adenylated Non-Coding RNAs, Including 5′ Leader Sequences of Primary MicroRNA Transcripts, Accumulate in Mouse Cells following Depletion of the RNA Helicase MTR4

    Get PDF
    RNA surveillance plays an important role in posttranscriptional regulation. Seminal work in this field has largely focused on yeast as a model system, whereas exploration of RNA surveillance in mammals is only recently begun. The increased transcriptional complexity of mammalian systems provides a wider array of targets for RNA surveillance, and, while many questions remain unanswered, emerging data suggest the nuclear RNA surveillance machinery exhibits increased complexity as well. We have used a small interfering RNA in mouse N2A cells to target the homolog of a yeast protein that functions in RNA surveillance (Mtr4p). We used high-throughput sequencing of polyadenylated RNAs (PA-seq) to quantify the effects of the mMtr4 knockdown (KD) on RNA surveillance. We demonstrate that overall abundance of polyadenylated protein coding mRNAs is not affected, but several targets of RNA surveillance predicted from work in yeast accumulate as adenylated RNAs in the mMtr4KD. microRNAs are an added layer of transcriptional complexity not found in yeast. After Drosha cleavage separates the pre-miRNA from the microRNA\u27s primary transcript, the byproducts of that transcript are generally thought to be degraded. We have identified the 5′ leading segments of pri-miRNAs as novel targets of mMtr4 dependent RNA surveillance
    corecore