535 research outputs found
Single Superfield Representation for Mixed Retarded and Advanced Correlators in Disordered Systems
We propose a new single superfield representation for mixed retarded and
advanced correlators for noninteracting disordered systems. The method is
tested in the simpler context of Random Matrix theory, by comparing with well
known universal behavior for level spacing correlations. Our method is general
and could be especially interesting to study localization properties encoded in
the mixed correlators of Quantum Hall systems.Comment: 13 pages including two figures, RevTex4. Improved version. Figures
changed. To appear in Journal of Physics
Description of the inelastic collision of two solitary waves for the BBM equation
We prove that the collision of two solitary waves of the BBM equation is
inelastic but almost elastic in the case where one solitary wave is small in
the energy space. We show precise estimates of the nonzero residue due to the
collision. Moreover, we give a precise description of the collision phenomenon
(change of size of the solitary waves).Comment: submitted for publication. Corrected typo in Theorem 1.
Bosonizing one-dimensional cold atomic gases
We present results for the long-distance asymptotics of correlation functions
of mesoscopic one-dimensional systems with periodic and open (Dirichlet)
boundary conditions, as well as at finite temperature in the thermodynamic
limit. The results are obtained using Haldane's harmonic-fluid approach (also
known as ``bosonization''), and are valid for both bosons and fermions, in
weakly and strongly interacting regimes. The harmonic-fluid approach and the
method to compute the correlation functions using conformal transformations are
explained in great detail. As an application relevant to one-dimensional
systems of cold atomic gases, we consider the model of bosons interacting with
a zero-range potential. The Luttinger-liquid parameters are obtained from the
exact solution by solving the Bethe-ansatz equations in finite-size systems.
The range of applicability of the approach is discussed, and the prefactor of
the one-body density matrix of bosons is fixed by finding an appropriate
parametrization of the weak-coupling result. The formula thus obtained is shown
to be accurate, when compared with recent diffusion Montecarlo calculations,
within less than 10%. The experimental implications of these results for Bragg
scattering experiments at low and high momenta are also discussed.Comment: 39 pages + 14 EPS figures; typos corrected, references update
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
The Gaussian graphical model in cross-sectional and time-series data
We discuss the Gaussian graphical model (GGM; an undirected network of
partial correlation coefficients) and detail its utility as an exploratory data
analysis tool. The GGM shows which variables predict one-another, allows for
sparse modeling of covariance structures, and may highlight potential causal
relationships between observed variables. We describe the utility in 3 kinds of
psychological datasets: datasets in which consecutive cases are assumed
independent (e.g., cross-sectional data), temporally ordered datasets (e.g., n
= 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In
time-series analysis, the GGM can be used to model the residual structure of a
vector-autoregression analysis (VAR), also termed graphical VAR. Two network
models can then be obtained: a temporal network and a contemporaneous network.
When analyzing data from multiple subjects, a GGM can also be formed on the
covariance structure of stationary means---the between-subjects network. We
discuss the interpretation of these models and propose estimation methods to
obtain these networks, which we implement in the R packages graphicalVAR and
mlVAR. The methods are showcased in two empirical examples, and simulation
studies on these methods are included in the supplementary materials.Comment: Accepted pending revision in Multivariate Behavioral Researc
Enhanced tactile acuity through mental states
Bodily training typically evokes behavioral and perceptual gains, enforcing neuroplastic processes and affecting neural representations. We investigated the effect on somatosensory perception of a three-day Zen meditation exercise, a purely mental intervention. Tactile spatial discrimination of the right index finger was persistently improved by only 6 hours of mental-sensory focusing on this finger, suggesting that intrinsic brain activity created by mental states can alter perception and behavior similarly to external stimulation
Recommended from our members
Intolerance of uncertainty predicts fear extinction in amygdala-ventromedial prefrontal cortical circuitry
Background: Coordination of activity between the amygdala and ventromedial prefrontal cortex (vmPFC) is important for fear-extinction learning. Aberrant recruitment of this circuitry is associated with anxiety disorders. Here, we sought to determine if individual differences in future threat uncertainty sensitivity, a potential risk factor for anxiety disorders, underly compromised recruitment of fear extinction circuitry.
Twenty-two healthy subjects completed a cued fear conditioning task with acquisition and extinction phases. During the task, pupil dilation, skin conductance response, and functional magnetic resonance imaging were acquired. We assessed the temporality of fear extinction learning by splitting the extinction phase into early and late extinction. Threat uncertainty sensitivity was measured using self-reported intolerance of uncertainty (IU).
Results: During early extinction learning, we found low IU scores to be associated with larger skin conductance responses and right amygdala activity to learned threat vs. safety cues, whereas high IU scores were associated with no skin conductance discrimination and greater activity within the right amygdala to previously learned safety cues. In late extinction learning, low IU scores were associated with successful inhibition of previously learned threat, reflected in comparable skin conductance response and right amgydala activity to learned threat vs. safety cues, whilst high IU scores were associated with continued fear expression to learned threat, indexed by larger skin conductance and amygdala activity to threat vs. safety cues. In addition, high IU scores were associated with greater vmPFC activity to threat vs. safety cues in late extinction. Similar patterns of IU and extinction learning were found for pupil dilation. The results were specific for IU and did not generalize to self-reported trait anxiety.
Conclusions: Overall, the neural and psychophysiological patterns observed here suggest high IU individuals to disproportionately generalize threat during times of uncertainty, which subsequently compromises fear extinction learning. More broadly, these findings highlight the potential of intolerance of uncertainty-based mechanisms to help understand pathological fear in anxiety disorders and inform potential treatment targets
Age-Related Attenuation of Dominant Hand Superiority
The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities
Innovations in pharmacovigilance studies of medicines in older people.
Pharmacovigilance is defined by the World Health Organization as "the science and activities relating to the detection, assessment, understanding and prevention of adverse effects or any other medicine/vaccine related problem". Pharmacovigilance studies are critical for detecting and assessing adverse events of medicines that may not have been observed in clinical trials. This activity is especially important in older people who are often excluded from clinical trials as they have multiple chronic conditions and use multiple medicines for longer durations than the clinical trials. In this narrative review we describe innovative methods in pharmacovigilance studies of medicines in older people that leverage the increasing availability of digital health technologies, electronic health records and real-world health data to identify and quantify medication related harms in older people
Serotonergic, brain volume and attentional correlates of trait anxiety in primates.
Trait anxiety is a risk factor for the development and maintenance of affective disorders, and insights into the underlying brain mechanisms are vital for improving treatment and prevention strategies. Translational studies in non-human primates, where targeted neurochemical and genetic manipulations can be made, are critical in view of their close neuroanatomical similarity to humans in brain regions implicated in trait anxiety. Thus, we characterised the serotonergic and regional brain volume correlates of trait-like anxiety in the marmoset monkey. Low- and high-anxious animals were identified by behavioral responses to a human intruder (HI) that are known to be sensitive to anxiolytic drug treatment. Extracellular serotonin levels within the amygdala were measured with in vivo microdialysis, at baseline and in response to challenge with the selective serotonin reuptake inhibitor, citalopram. Regional brain volume was assessed by structural magnetic resonance imaging. Anxious individuals showed persistent, long-term fearful responses to both a HI and a model snake, alongside sustained attention (vigilance) to novel cues in a context associated with unpredictable threat. Neurally, high-anxious marmosets showed reduced amygdala serotonin levels, and smaller volumes in a closely connected prefrontal region, the dorsal anterior cingulate cortex. These findings highlight behavioral and neural similarities between trait-like anxiety in marmosets and humans, and set the stage for further investigation of the processes contributing to vulnerability and resilience to affective disorders.This research was supported by a Medical Research Programme Grant (G0901884) from the Medical Research Council UK (MRC) to Angela Roberts, and a PhD studentship from MRC and final-term funding from Trinity College, Cambridge, UK to Yevheniia Mikheenko.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/npp/journal/v40/n6/full/npp2014324a.htm
- …
