64,624 research outputs found

    One conjecture and two observations on de Sitter space

    Full text link
    We propose that the state represented by the Nariai black hole inside de Sitter space is the ground state of the de Sitter gravity, while the pure de Sitter space is the maximal energy state. With this point of view, we investigate thermodynamics of de Sitter space, we find that if there is a dual field theory, this theory can not be a CFT in a fixed dimension. Near the Nariai limit, we conjecture that the dual theory is effectively an 1+1 CFT living on the radial segment connecting the cosmic horizon and the black hole horizon. If we go beyond the de Sitter limit, the "imaginary" high temperature phase can be described by a CFT with one dimension lower than the spacetime dimension. Below the de Sitter limit, we are approaching a phase similar to the Hagedorn phase in 2+1 dimensions, the latter is also a maximal energy phase if we hold the volume fixed.Comment: 12 pages, harvmac; references added; version for publication in JHE

    Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson's disease aetiology

    Get PDF
    Mitochondrial impairment, glutathione depletion and oxidative stress have been implicated in the pathogenesis of Parkinson’s disease (PD), linked recently to proteasomal dysfunction. Our study analysed how these factors influence the various activities of the proteasome in human SH-SY5Y neuroblastoma cells treated with the PD mimetics MPP+ (a complex 1 inhibitor) or dopamine. Treatment with these toxins led to dose- and time-dependent reductions in ATP and glutathione and also chymotrypsin-like and post-acidic like activities; trypsin-like activity was unaffected. Antioxidants blocked the effects of dopamine, but not MPP+, suggesting that oxidative stress was more important in the dopamine-mediated effects. With MPP+, ATP depletion was a prerequisite for loss of proteasomal activity. Thus in a dopaminergic neuron with complex 1 dysfunction both oxidative stress and ATP depletion will contribute independently to loss of proteasomal function. We show for the first time that addition of MPP+ or dopamine to purified samples of the human 20S proteasome also reduced proteasomal activities; with dopamine being most damaging. As with toxin-treated cells, chymotrypsin-like activity was most sensitive and trypsin-like activity the least sensitive. The observed differential sensitivity of the various proteasomal activities to PD mimetics is novel and its significance needs further study in human cells

    Free field realization of the exceptional current superalgebra \hat{D(2,1;\a)}_k

    Full text link
    The free-field representations of the D(2,1;\a) current superalgebra and the corresponding energy-momentum tensor are constructed. The related screening currents of the first kind are also presented.Comment: Latex file, 10 page

    No spin-localization phase transition in the spin-boson model without local field

    Full text link
    We explore the spin-boson model in a special case, i.e., with zero local field. In contrast to previous studies, we find no possibility for quantum phase transition (QPT) happening between the localized and delocalized phases, and the behavior of the model can be fully characterized by the even or odd parity as well as the parity breaking, instead of the QPT, owned by the ground state of the system. Our analytical treatment about the eigensolution of the ground state of the model presents for the first time a rigorous proof of no-degeneracy for the ground state of the model, which is independent of the bath type, the degrees of freedom of the bath and the calculation precision. We argue that the QPT mentioned previously appears due to unreasonable treatment of the ground state of the model or of the infrared divergence existing in the spectral functions for Ohmic and sub-Ohmic dissipations.Comment: 5 pages, 1 figure. Comments are welcom

    Reciprocal relationships in collective flights of homing pigeons

    Get PDF
    Collective motion of bird flocks can be explained via the hypothesis of many wrongs, and/or, a structured leadership mechanism. In pigeons, previous studies have shown that there is a well-defined hierarchical structure and certain specific individuals occupy more dominant positions --- suggesting that leadership by the few individuals drives the behavior of the collective. Conversely, by analyzing the same data-sets, we uncover a more egalitarian mechanism. We show that both reciprocal relationships and a stratified hierarchical leadership are important and necessary in the collective movements of pigeon flocks. Rather than birds adopting either exclusive averaging or leadership strategies, our experimental results show that it is an integrated combination of both compromise and leadership which drives the group's movement decisions.Comment: 7 pages, 5 figure
    corecore