64,624 research outputs found
One conjecture and two observations on de Sitter space
We propose that the state represented by the Nariai black hole inside de
Sitter space is the ground state of the de Sitter gravity, while the pure de
Sitter space is the maximal energy state. With this point of view, we
investigate thermodynamics of de Sitter space, we find that if there is a dual
field theory, this theory can not be a CFT in a fixed dimension. Near the
Nariai limit, we conjecture that the dual theory is effectively an 1+1 CFT
living on the radial segment connecting the cosmic horizon and the black hole
horizon. If we go beyond the de Sitter limit, the "imaginary" high temperature
phase can be described by a CFT with one dimension lower than the spacetime
dimension. Below the de Sitter limit, we are approaching a phase similar to the
Hagedorn phase in 2+1 dimensions, the latter is also a maximal energy phase if
we hold the volume fixed.Comment: 12 pages, harvmac; references added; version for publication in JHE
Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson's disease aetiology
Mitochondrial impairment, glutathione depletion and oxidative stress have been implicated in the pathogenesis of Parkinson’s disease (PD), linked recently to proteasomal dysfunction. Our study analysed how these factors influence the various activities of the proteasome in human SH-SY5Y neuroblastoma cells treated with the PD mimetics MPP+ (a complex 1 inhibitor) or dopamine. Treatment with these toxins led to dose- and time-dependent reductions in ATP and glutathione and also chymotrypsin-like and post-acidic like activities; trypsin-like activity was unaffected. Antioxidants blocked the effects of dopamine, but not MPP+, suggesting that oxidative stress was more important in the dopamine-mediated effects. With MPP+, ATP depletion was a prerequisite for loss of proteasomal activity. Thus in a dopaminergic neuron with complex 1 dysfunction both oxidative stress and ATP depletion will contribute independently to loss of proteasomal function. We show for the first time that addition of MPP+ or dopamine to purified samples of the human 20S proteasome also reduced proteasomal activities; with dopamine being most damaging. As with toxin-treated cells, chymotrypsin-like activity was most sensitive and trypsin-like activity the least sensitive. The observed differential sensitivity of the various proteasomal activities to PD mimetics is novel and its significance needs further study in human cells
Recommended from our members
The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells.
We have investigated the controversial involvement of components of the SNARE (soluble N-ethyl maleimide-sensitive factor [NSF] attachment protein [SNAP] receptor) machinery in membrane traffic to the apical plasma membrane of polarized epithelial (MDCK) cells. Overexpression of syntaxin 3, but not of syntaxins 2 or 4, caused an inhibition of TGN to apical transport and apical recycling, and leads to an accumulation of small vesicles underneath the apical plasma membrane. All other tested transport steps were unaffected by syntaxin 3 overexpression. Botulinum neurotoxin E, which cleaves SNAP-23, and antibodies against alpha-SNAP inhibit both TGN to apical and basolateral transport in a reconstituted in vitro system. In contrast, we find no evidence for an involvement of N-ethyl maleimide-sensitive factor in TGN to apical transport, whereas basolateral transport is NSF-dependent. We conclude that syntaxin 3, SNAP-23, and alpha-SNAP are involved in apical membrane fusion. These results demonstrate that vesicle fusion with the apical plasma membrane does not use a mechanism that is entirely unrelated to other cellular membrane fusion events, but uses isoforms of components of the SNARE machinery, which suggests that they play a role in providing specificity to polarized membrane traffic
Free field realization of the exceptional current superalgebra \hat{D(2,1;\a)}_k
The free-field representations of the D(2,1;\a) current superalgebra and
the corresponding energy-momentum tensor are constructed. The related screening
currents of the first kind are also presented.Comment: Latex file, 10 page
No spin-localization phase transition in the spin-boson model without local field
We explore the spin-boson model in a special case, i.e., with zero local
field. In contrast to previous studies, we find no possibility for quantum
phase transition (QPT) happening between the localized and delocalized phases,
and the behavior of the model can be fully characterized by the even or odd
parity as well as the parity breaking, instead of the QPT, owned by the ground
state of the system. Our analytical treatment about the eigensolution of the
ground state of the model presents for the first time a rigorous proof of
no-degeneracy for the ground state of the model, which is independent of the
bath type, the degrees of freedom of the bath and the calculation precision. We
argue that the QPT mentioned previously appears due to unreasonable treatment
of the ground state of the model or of the infrared divergence existing in the
spectral functions for Ohmic and sub-Ohmic dissipations.Comment: 5 pages, 1 figure. Comments are welcom
Reciprocal relationships in collective flights of homing pigeons
Collective motion of bird flocks can be explained via the hypothesis of many
wrongs, and/or, a structured leadership mechanism. In pigeons, previous studies
have shown that there is a well-defined hierarchical structure and certain
specific individuals occupy more dominant positions --- suggesting that
leadership by the few individuals drives the behavior of the collective.
Conversely, by analyzing the same data-sets, we uncover a more egalitarian
mechanism. We show that both reciprocal relationships and a stratified
hierarchical leadership are important and necessary in the collective movements
of pigeon flocks. Rather than birds adopting either exclusive averaging or
leadership strategies, our experimental results show that it is an integrated
combination of both compromise and leadership which drives the group's movement
decisions.Comment: 7 pages, 5 figure
- …
