1,881 research outputs found
Ultracold collisions involving heteronuclear alkali metal dimers
We have carried out the first quantum dynamics calculations on ultracold
atom-diatom collisions in isotopic mixtures. The systems studied are
spin-polarized 7Li + 6Li7Li, 7Li + 6Li2, 6Li + 6Li7Li and 6Li + 7Li2. Reactive
scattering can occur for the first two systems even when the molecules are in
their ground rovibrational states, but is slower than vibrational relaxation in
homonuclear systems. Implications for sympathetic cooling of heteronuclear
molecules are discussed.Comment: 4 pages, 3 figure
Ecoulement 3D dans une structure d'échangeur Confrontation Mesures Simulations
ACCUne exploration expérimentale et numérique des champs de vitesse d'un écoulement dans un échangeur de chaleur a été menée. Une méthode de mesure, non intrusive, de vélocimétrie par image de particuels (PIV) appliquée sur une maquette à l'échelle 1, associée à un filtrage puis à un filtrage puis à un traitement par flot optique et programmation dynamique, a permis de déterminer la distribution des vitesses dans les tubes de l'échangeur. Les simulations numériques montrent un bon accord avec la répartition des vitesses mesurées dans les canaux de l'échangeur
Design and stability study of a paediatric oral solution of methotrexate 2mg/ml
Oral paediatric forms development by pharmaceutical industry is still insufficient. The present study was performed to propose an adapted and pleasant formulation of liquid oral formulation of MTX. The solution is composed of injectable methotrexate, water, Ora Sweet(®) and sodium bicarbonate. After 120 days storage, pH remained stable at about 8 in all formulations, insuring no risk of MTX precipitation. MTX content in solution formulation, determined by high performance liquid chromatography measurements, remained in the specifications of >90% of the initial concentration when stored at 4 and 25°C. Forced degradation of MTX by heat and acidic conditions allowed formation and detection of degradation products by the analytical method. Microbial study of the preparation shows that the solution remains in the specifications during all the storage, or after one sample each week during one month, eventually indicating the microbial properties are not affected by patient use. To conclude, we here propose a new MTX liquid formulation stable for at least 120 days
Low temperature heat capacity of Fe_{1-x}Ga_{x} alloys with large magneostriction
The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large
magnetostriction has been investigated. The data were analyzed in the standard
way using electron () and phonon () contributions. The
Debye temperature decreases approximately linearly with increasing
Ga concentration, consistent with previous resonant ultrasound measurements and
measured phonon dispersion curves. Calculations of from lattice
dynamical models and from measured elastic constants C_{11}, C_{12} and C_{44}
are in agreement with the measured data. The linear coefficient of electronic
specific heat remains relatively constant as the Ga concentration
increases, despite the fact that the magnetoelastic coupling increases. Band
structure calculations show that this is due to the compensation of majority
and minority spin states at the Fermi level.Comment: 14 pages, 6 figure
Atomic Diagnostics of X-ray Irradiated Protoplanetary Disks
We study atomic line diagnostics of the inner regions of protoplanetary disks
with our model of X-ray irradiated disk atmospheres which was previously used
to predict observable levels of the NeII and NeIII fine-structure transitions
at 12.81 and 15.55mum. We extend the X-ray ionization theory to sulfur and
calculate the fraction of sulfur in S, S+, S2+ and sulfur molecules. For the
D'Alessio generic T Tauri star disk, we find that the SI fine-structure line at
25.55mum is below the detection level of the Spitzer Infrared Spectrometer
(IRS), in large part due to X-ray ionization of atomic S at the top of the
atmosphere and to its incorporation into molecules close to the mid-plane. We
predict that observable fluxes of the SII 6718/6732AA forbidden transitions are
produced in the upper atmosphere at somewhat shallower depths and smaller radii
than the neon fine-structure lines. This and other forbidden line transitions,
such as the OI 6300/6363AA and the CI 9826/9852AA lines, serve as complementary
diagnostics of X-ray irradiated disk atmospheres. We have also analyzed the
potential role of the low-excitation fine-structure lines of CI, CII, and OI,
which should be observable by SOFIA and Herschel.Comment: Accepted by Ap
Physical Conditions in Orion's Veil
Orion's veil consists of several layers of largely neutral gas lying between
us and the main ionizing stars of the Orion nebula. It is visible in 21cm H I
absorption and in optical and UV absorption lines of H I and other species.
Toward the Trapezium, the veil has two remarkable properties, high magnetic
field (~100 microGauss) and a surprising lack of molecular hydrogen given its
total hydrogen column density. Here we compute photoionization models of the
veil to establish its gas density and its distance from the Trapezium. We use a
greatly improved model of the hydrogen molecule that determines level
populations in ~1e5 rotational/vibrational levels and provides improved
estimates of molecular hydrogen destruction via the Lyman-Werner bands. Our
best fit photoionization models place the veil 1-3 pc in front of the star at a
density of 1e3-1e4 cubic centimeters. Magnetic energy dominates the energy of
non-thermal motions in at least one of the 21cm H I velocity components.
Therefore, the veil is the first interstellar environment where magnetic
dominance appears to exist. We find that the low ratio of molecular to atomic
hydrogen (< 1e-4) is a consequence of high UV flux incident upon the veil due
to its proximity to the Trapezium stars and the absence of small grains in the
region.Comment: 45 pages, 20 figures, accepted for publication in Ap
Infrared Spectroscopy of Molecular Supernova Remnants
We present Infrared Space Observatory spectroscopy of sites in the supernova
remnants W28, W44, and 3C391, where blast waves are impacting molecular clouds.
Atomic fine-structure lines were detected from C, N, O, Si, P, and Fe. The S(3)
and S(9) lines of H2 were detected for all three remnants. The observations
require both shocks into gas with moderate (~ 100 /cm3) and high (~10,000 /cm3)
pre-shock densities, with the moderate density shocks producing the ionic lines
and the high density shock producing the molecular lines. No single shock model
can account for all of the observed lines, even at the order of magnitude
level. We find that the principal coolants of radiative supernova shocks in
moderate-density gas are the far-infrared continuum from dust grains surviving
the shock, followed by collisionally-excited [O I] 63.2 and [Si II] 34.8 micron
lines. The principal coolant of the high-density shocks is
collisionally-excited H2 rotational and ro-vibrational line emission. We
systematically examine the ground-state fine structure of all cosmically
abundant elements, to explain the presence or lack of all atomic fine lines in
our spectra in terms of the atomic structure, interstellar abundances, and a
moderate-density, partially-ionized plasma. The [P II] line at 60.6 microns is
the first known astronomical detection. There is one bright unidentified line
in our spectra, at 74.26 microns. The presence of bright [Si II] and [Fe II]
lines requires partial destruction of the dust. The required gas-phase
abundance of Fe suggests 15-30% of the Fe-bearing grains were destroyed. The
infrared continuum brightness requires ~1 Msun of dust survives the shock,
suggesting about 1/3 of the dust mass was destroyed, in agreement with the
depletion estimate and with theoretical models for dust destruction.Comment: 40 pages; 10 figures; accepted by ApJ July 11, 200
Physical Conditoins in Orion's Veil II: A Multi-Component Study of the Line of Sight Toward the Trapezium
Orion's Veil is an absorbing screen that lies along the line of sight to the
Orion H II region. It consists of two or more layers of gas that must lie
within a few parsecs of the Trapezium cluster. Our previous work considered the
Veil as a whole and found that the magnetic field dominates the energetics of
the gas in at least one component. Here we use high-resolution STIS UV spectra
that resolve the two velocity components in absorption and determine the
conditions in each. We derive a volume hydrogen density, 21 cm spin
temperature, turbulent velocity, and kinetic temperature, for each. We combine
these estimates with magnetic field measurements to find that magnetic energy
significantly dominates turbulent and thermal energies in one component, while
the other component is close to equipartition between turbulent and magnetic
energies. We observe molecular hydrogen absorption for highly excited v, J
levels that are photoexcited by the stellar continuum, and detect blueshifted S
III and P III. These ions must arise from ionized gas between the mostly
neutral portions of the Veil and the Trapezium and shields the Veil from
ionizing radiation. We find that this layer of ionized gas is also responsible
for He I absorption in the Veil, which resolves a 40-year-old debate on the
origin of He I absorption towards the Trapezium. Finally, we determine that the
ionized and mostly atomic layers of the Veil will collide in less than 85,000
years.Comment: 43 pages, 15 figures, to be published in Ap
Multichannel quantum-defect theory for ultracold atom-ion collisions
We develop an analytical model for ultracold atom-ion collisions using the
multichannel quantum-defect formalism. The model is based on the analytical
solutions of the r^-4 long-range potential and on the application of a frame
transformation between asymptotic and molecular bases. This approach allows the
description of the atom-ion interaction in the ultracold domain in terms of
three parameters only: the singlet and triplet scattering lengths, assumed to
be independent of the relative motion angular momentum, and the lead dispersion
coefficient of the asymptotic potential. We also introduce corrections to the
scattering lengths that improve the accuracy of our quantum-defect model for
higher order partial waves, a particularly important result for an accurate
description of shape and Feshbach resonances at finite temperature. The theory
is applied to the system composed of a 40Ca+ ion and a Na atom, and compared to
numerical coupled-channel calculations carried out using ab initio potentials.
For this particular system, we investigate the spectrum of bound states, the
rate of charge-transfer processes, and the collision rates in the presence of
magnetic Feshbach resonances at zero and finite temperature.Comment: 39 pages, 21 figure
Rydberg-valence interactions of CO, and spectroscopic evidence characterizing the C valence state
- …
