9,694 research outputs found
Review of available synchronization and time distribution techniques
The methods of synchronizing precision clocks will be reviewed placing particular attention to the simpler techniques, their accuracies, and the approximate cost of equipment. The more exotic methods of synchronization are discussed in lesser detail. The synchronization techniques that will be covered will include satellite dissemination, communication and navigation transmissions via VLF, LF, HF, UHF and microwave as well as commercial and armed forces television. Portable clock trips will also be discussed
High performance, high density hydrocarbon fuels
The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified
Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.
The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories
Magpie: towards a semantic web browser
Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through ‘standard’ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the
interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased
semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our lab’s web resources
Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo
Although some primates, including chimpanzees, throw objects occasionally1,2, only humans regularly throw projectiles with high speed and great accuracy. Darwin noted that humans’ unique throwing abilities, made possible when bipedalism emancipated the arms, enabled foragers to effectively hunt using projectiles3. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence on when, how, and why hominins evolved the ability to generate high-speed throws4-8. Here, we show using experimental studies of throwers that human throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately two million years ago in the species Homo erectus. Given archaeological evidence that suggests hunting activity intensified around this time9, we conclude that selection for throwing in order to hunt likely played an important role in the evolution of the human genus
High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions
Interplay Between Chaotic and Regular Motion in a Time-Dependent Barred Galaxy Model
We study the distinction and quantification of chaotic and regular motion in
a time-dependent Hamiltonian barred galaxy model. Recently, a strong
correlation was found between the strength of the bar and the presence of
chaotic motion in this system, as models with relatively strong bars were shown
to exhibit stronger chaotic behavior compared to those having a weaker bar
component. Here, we attempt to further explore this connection by studying the
interplay between chaotic and regular behavior of star orbits when the
parameters of the model evolve in time. This happens for example when one
introduces linear time dependence in the mass parameters of the model to mimic,
in some general sense, the effect of self-consistent interactions of the actual
N-body problem. We thus observe, in this simple time-dependent model also, that
the increase of the bar's mass leads to an increase of the system's chaoticity.
We propose a new way of using the Generalized Alignment Index (GALI) method as
a reliable criterion to estimate the relative fraction of chaotic vs. regular
orbits in such time-dependent potentials, which proves to be much more
efficient than the computation of Lyapunov exponents. In particular, GALI is
able to capture subtle changes in the nature of an orbit (or ensemble of
orbits) even for relatively small time intervals, which makes it ideal for
detecting dynamical transitions in time-dependent systems.Comment: 21 pages, 9 figures (minor typos fixed) to appear in J. Phys. A:
Math. Theo
Evolutionary Dynamics on Small-Order Graphs
Abstract. We study the stochastic birth-death model for structured finite populations popularized by Lieberman et al. [Lieberman, E., Hauert, C., Nowak, M.A., 2005. Evolutionary dynamics on graphs. Nature 433, 312-316]. We consider all possible connected undirected graphs of orders three through eight. For each graph, using the Monte Carlo Markov Chain simulations, we determine the fixation probability of a mutant introduced at every possible vertex. We show that the fixation probability depends on the vertex and on the graph. A randomly placed mutant has the highest chances of fixation in a star graph, closely followed by star-like graphs. The fixation probability was lowest for regular and almost regular graphs. We also find that within a fixed graph, the fixation probability of a mutant has a negative correlation with the degree of the starting vertex. 1
Non-adiabatic pumping in an oscillating-piston model
We consider the prototypical "piston pump" operating on a ring, where a
circulating current is induced by means of an AC driving. This can be regarded
as a generalized Fermi-Ulam model, incorporating a finite-height moving wall
(piston) and non trivial topology (ring). The amount of particles transported
per cycle is determined by a layered structure of phase-space. Each layer is
characterized by a different drift velocity. We discuss the differences
compared with the adiabatic and Boltzmann pictures, and highlight the
significance of the "diabatic" contribution that might lead to a
counter-stirring effect.Comment: 6 pages, 4 figures, improved versio
Speech Communication
Contains reports on seven research projects.Contract AF19(604)-2061 with Air Force Cambridge Research CenterContract N5ori-07861 with the Navy (Office of Naval Research)National Science Foundatio
- …
