406 research outputs found
Hydrogen-Helium Mixtures at High Pressure
The properties of hydrogen-helium mixtures at high pressure are crucial to
address important questions about the interior of Giant planets e.g. whether
Jupiter has a rocky core and did it emerge via core accretion? Using path
integral Monte Carlo simulations, we study the properties of these mixtures as
a function of temperature, density and composition. The equation of state is
calculated and compared to chemical models. We probe the accuracy of the ideal
mixing approximation commonly used in such models. Finally, we discuss the
structure of the liquid in terms of pair correlation functions.Comment: Proceedings article of the 5th Conference on Cryocrystals and Quantum
Crystals in Wroclaw, Poland, submitted to J. Low. Temp. Phys. (2004
Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized DT fuel
The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be reduced by about 15% for a fully polarized nuclear fuel. Moreover, numerical simulations of a directly driven capsule show that the required laser power and energy to achieve a high gain scale as d-0.6 and d-0.4 respectively, while the maximum achievable energy gain scales as d0.9
Trends in autoionization of Rydberg states converging to the 4s threshold in the Kr-Rb⁺-Sr²⁺ isoelectonic sequence: theory and experiment
We have measured the photoabsorption spectra of the Kr-like ions Rb+ and Sr2+ at photon energies corresponding to the excitation of 4s-np resonances using, the dual laser plasma photoabsorption technique. Dramatic changes in the line profiles, with increasing ionization and also proceeding along the Rydberg series of each ion, are observed and explained by the trends in 4s-transition amplitudes computed within a framework of configuration-interaction Pauli-Fock calculations. Total photoionization cross sections show very good agreement with relative absorption data extracted from the measured spectra
Measured dependence of nuclear burn region size on implosion parameters in inertial confinement fusion experiments
Validation of the synthetic model for the imaging heavy ion beam probe at the ASDEX Upgrade tokamak
Neutron Bang Time Detector Based on a Light Pipe
A neutron bang time detector consisting of a scintillator, light pipe, photomultiplier tube (PMT), and high-bandwidth oscilloscope has been implemented on the 60-beam, 30-kJ OMEGA Laser Facility at the University of Rochester's Laboratory for Laser Energetics. Light from the scintillator, located 23 cm from the target, is transmitted outside the target bay through a 9.6-m-long, 2-in.-diam polished stainless steel pipe to the PMT. The PMT signal is recorded by two channels of a 6-GHz, 10-GS/s Tektronix 6604 oscilloscope. The OMEGA optical fiducial pulse train is recorded on the third oscilloscope channel using a fast photodiode to provide the timing reference to the laser. The bang-time detector is absolutely calibrated in time and is able to measure bang time for neutron yields above 1 x 10{sup 9} with accuracy of better than 25 ps
Systematic Reviews of Animal Experiments Demonstrate Poor Human Clinical and Toxicological Utility
The assumption that animal models are reasonably predictive of human outcomes provides the basis for their widespread use in toxicity testing and in biomedical research aimed at developing cures for human diseases. To investigate the validity of this assumption, the comprehensive Scopus biomedical bibliographic databases were searched for published systematic reviews of the human clinical or toxicological utility of animal experiments. In 20 reviews in which clinical utility was examined, the authors concluded that animal models were either significantly useful in contributing to the development of clinical interventions, or were substantially consistent with clinical outcomes, in only two cases, one of which was contentious. These included reviews of the clinical utility of experiments expected by ethics committees to lead to medical advances, of highly-cited experiments published in major journals, and of chimpanzee experiments — those involving the species considered most likely to be predictive of human outcomes. Seven additional reviews failed to clearly demonstrate utility in predicting human toxicological outcomes, such as carcinogenicity and teratogenicity. Consequently, animal data may not generally be assumed to be substantially useful for these purposes. Possible causes include interspecies differences, the distortion of outcomes arising from experimental environments and protocols, and the poor methodological quality of many animal experiments, which was evident in at least 11 reviews. No reviews existed in which the majority of animal experiments were of good methodological quality. Whilst the effects of some of these problems might be minimised with concerted effort (given their widespread prevalence), the limitations resulting from interspecies differences are likely to be technically and theoretically impossible to overcome. Non-animal models are generally required to pass formal scientific validation prior to their regulatory acceptance. In contrast, animal models are simply assumed to be predictive of human outcomes. These results demonstrate the invalidity of such assumptions. The consistent application of formal validation studies to all test models is clearly warranted, regardless of their animal, non-animal, historical, contemporary or possible future status. Likely benefits would include, the greater selection of models truly predictive of human outcomes, increased safety of people exposed to chemicals that have passed toxicity tests, increased efficiency during the development of human pharmaceuticals and other therapeutic interventions, and decreased wastage of animal, personnel and financial resources. The poor human clinical and toxicological utility of most animal models for which data exists, in conjunction with their generally substantial animal welfare and economic costs, justify a ban on animal models lacking scientific data clearly establishing their human predictivity or utility
Multispectral x-ray imaging with a pinhole array and a flat Bragg mirror
We describe a multiple monochromatic x-ray imager designed for implosion experiments. This instrument uses an array of pinholes in front of a flat multilayered Bragg mirror to provide many individual quasi-monochromatic x-ray pinhole images spread over a wide spectral range. We discuss design constraints and optimizations, and we discuss the specific details of the instrument we have used to obtain temperature and density maps of implosion plasmas
- …
