4,074 research outputs found
On the properties of superconducting planar resonators at mK temperatures
Planar superconducting resonators are now being increasingly used at mK
temperatures in a number of novel applications. They are also interesting
devices in their own right since they allow us to probe the properties of both
the superconductor and its environment. We have experimentally investigated
three types of niobium resonators - including a lumped element design -
fabricated on sapphire and SiO_2/Si substrates. They all exhibit a non-trivial
temperature dependence of their centre frequency and quality factor. Our
results shed new light on the interaction between the electromagnetic waves in
the resonator and two-level fluctuators in the substrate.Comment: V2 includes some minor corrections/changes. Submitted to PR
Magnetic field tuning of coplanar waveguide resonators
We describe measurements on microwave coplanar resonators designed for
quantum bit experiments. Resonators have been patterned onto sapphire and
silicon substrates, and quality factors in excess of a million have been
observed. The resonant frequency shows a high sensitivity to magnetic field
applied perpendicular to the plane of the film, with a quadratic dependence for
the fundamental, second and third harmonics. Frequency shift of hundreds of
linewidths can be obtained.Comment: Accepted for publication in AP
Implications of new measurements of O-16 + p + C-12,13, N-14,15 for the abundances of C, N isotopes at the cosmic ray source
The fragmentation of a 225 MeV/n O-16 beam was investigated at the Bevalac. Preliminary cross sections for mass = 13, 14, 15 fragments are used to constrain the nuclear excitation functions employed in galactic propagation calculations. Comparison to cosmic ray isotonic data at low energies shows that in the cosmic ray source C-13/C approximately 2% and N-14/0=3-6%. No source abundance of N-15 is required with the current experimental results
Circuit QED with a Flux Qubit Strongly Coupled to a Coplanar Transmission Line Resonator
We propose a scheme for circuit quantum electrodynamics with a
superconducting flux-qubit coupled to a high-Q coplanar resonator. Assuming
realistic circuit parameters we predict that it is possible to reach the strong
coupling regime. Routes to metrological applications, such as single photon
generation and quantum non-demolition measurements are discussed.Comment: 8 pages, 5 figure
Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets
In this paper we study the boundary limit properties of harmonic functions on
, the solutions to the Poisson equation where is a p.c.f. set
and its Laplacian given by a regular harmonic structure. In
particular, we prove the existence of nontangential limits of the corresponding
Poisson integrals, and the analogous results of the classical Fatou theorems
for bounded and nontangentially bounded harmonic functions.Comment: 22 page
A note on the decay of noncommutative solitons
We propose an ansatz for the equations of motion of the noncommutative model
of a tachyonic scalar field interacting with a gauge field, which allows one to
find time-dependent solutions describing decaying solitons. These correspond to
the collapse of lower dimensional branes obtained through tachyon condensation
of unstable brane systems in string theory.Comment: 8 pages, no figures. Extended version, references adde
Two-Dimensional Dilaton-Gravity Coupled to Massless Spinors
We apply a global and geometrically well-defined formalism for
spinor-dilaton-gravity to two-dimensional manifolds. We discuss the general
formalism and focus attention on some particular choices of the dilatonic
potential. For constant dilatonic potential the model turns out to be
completely solvable and the general solution is found. For linear and
exponential dilatonic potentials we present the class of exact solutions with a
Killing vector.Comment: 21 pages, LaTeX, minor changes in text and format, final version to
appear in Classical and Quantum Gravit
- …
