476 research outputs found
A novel research definition of bladder health in women and girls: Implications for research and public health promotion
BACKGROUND:Bladder health in women and girls is poorly understood, in part, due to absence of a definition for clinical or research purposes. This article describes the process used by a National Institutes of Health funded transdisciplinary research team (The Prevention of Lower Urinary Tract Symptoms [PLUS] Consortium) to develop a definition of bladder health. METHODS:The PLUS Consortium identified currently accepted lower urinary tract symptoms (LUTS) and outlined elements of storage and emptying functions of the bladder. Consistent with the World Health Organization's definition of health, PLUS concluded that absence of LUTS was insufficient and emphasizes the bladder's ability to adapt to short-term physical, psychosocial, and environmental challenges for the final definition. Definitions for subjective experiences and objective measures of bladder dysfunction and health were drafted. An additional bioregulatory function to protect against infection, neoplasia, chemical, or biologic threats was proposed. RESULTS:PLUS proposes that bladder health be defined as: "A complete state of physical, mental, and social well-being related to bladder function and not merely the absence of LUTS. Healthy bladder function permits daily activities, adapts to short-term physical or environmental stressors, and allows optimal well-being (e.g., travel, exercise, social, occupational, or other activities)." Definitions for each element of bladder function are reported with suggested subjective and objective measures. CONCLUSIONS:PLUS used a comprehensive transdisciplinary process to develop a bladder health definition. This will inform instrument development for evaluation of bladder health promotion and prevention of LUTS in research and public health initiatives
Indirect Detection of a Light Higgsino Motivated by Collider Data
Kane and Wells recently argued that collider data point to a Higgsino-like
lightest supersymmetric partner which would explain the dark matter in our
Galactic halo. They discuss direct detection of such dark-matter particles in
laboratory detectors. Here, we argue that such a particle, if it is indeed the
dark matter, might alternatively be accessible in experiments which search for
energetic neutrinos from dark-matter annihilation in the Sun. We provide
accurate analytic estimates for the rates which take into account all relevant
physical effects. Currently, the predicted signal falls roughly one to three
orders of magnitude below experimental bounds, depending on the mass and
coupling of the particle; however, detectors such as MACRO, super-Kamiokande,
and AMANDA will continue to take data and should be able to rule out or confirm
an interesting portion of the possible mass range for such a dark-matter
particle within the next five years.Comment: 10 pages, RevTe
Model-Independent Comparison of Direct vs. Indirect Detection of Supersymmetric Dark Matter
We compare the rate for elastic scattering of neutralinos from various nuclei
with the flux of upward muons induced by energetic neutrinos from neutralino
annihilation in the Sun and Earth. We consider both scalar and axial-vector
interactions of neutralinos with nuclei. We find that the event rate in a kg of
germanium is roughly equivalent to that in a - to -m muon
detector for a neutralino with primarily scalar coupling to nuclei. For an
axially coupled neutralino, the event rate in a 50-gram hydrogen detector is
roughly the same as that in a 10- to 500-m muon detector. Expected
experimental backgrounds favor forthcoming elastic-scattering detectors for
scalar couplings while the neutrino detectors have the advantage for
axial-vector couplings.Comment: 10 pages, self-unpacking uuencoded PostScript fil
Optical Properties of Deep Ice at the South Pole - Absorption
We discuss recent measurements of the wavelength-dependent absorption
coefficients in deep South Pole ice. The method uses transit time distributions
of pulses from a variable-frequency laser sent between emitters and receivers
embedded in the ice. At depths of 800 to 1000 m scattering is dominated by
residual air bubbles, whereas absorption occurs both in ice itself and in
insoluble impurities. The absorption coefficient increases approximately
exponentially with wavelength in the measured interval 410 to 610 nm. At the
shortest wavelength our value is about a factor 20 below previous values
obtained for laboratory ice and lake ice; with increasing wavelength the
discrepancy with previous measurements decreases. At around 415 to 500 nm the
experimental uncertainties are small enough for us to resolve an extrinsic
contribution to absorption in ice: submicron dust particles contribute by an
amount that increases with depth and corresponds well with the expected
increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The
laser pulse method allows remote mapping of gross structure in dust
concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9
figures, not included, available on request from [email protected]
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview
Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam
Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector
A search for nearly vertical up-going muon-neutrinos from neutralino
annihilations in the center of the Earth has been performed with the AMANDA-B10
neutrino detector. The data sample collected in 130.1 days of live-time in
1997, ~10^9 events, has been analyzed for this search. No excess over the
expected atmospheric neutrino background is oberved. An upper limit at 90%
confidence level on the annihilation rate of neutralinos in the center of the
Earth is obtained as a function of the neutralino mass in the range 100
GeV-5000 GeV, as well as the corresponding muon flux limit.Comment: 14 pages, 11 figures. Version accepted for publication in Physical
Review
The AMANDA Neutrino Telescope: Principle of Operation and First Results
AMANDA is a high-energy neutrino telescope presently under construction at
the geographical South Pole. In the Antarctic summer 1995/96, an array of 80
optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths
between 1.5 and 2 km. In this paper we describe the design and performance of
the AMANDA-B4 prototype, based on data collected between February and November
1996. Monte Carlo simulations of the detector response to down-going
atmospheric muon tracks show that the global behavior of the detector is
understood. We describe the data analysis method and present first results on
atmospheric muon reconstruction and separation of neutrino candidates. The
AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97
(AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic
The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter
With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV
and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the
first of a new generation of high energy neutrino telescopes, reaching a scale
envisaged over 25 years ago. We describe its performance, focussing on the
capability to detect halo dark matter particles via their annihilation into
neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures.
Talk presented at the 3rd International Symposium on Sources and Detection of
Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199
Physics and Astrophysics of Strange Quark Matter
3-flavor quark matter (strange quark matter; SQM) can be stable or metastable
for a wide range of strong interaction parameters. If so, SQM can play an
important role in cosmology, neutron stars, cosmic ray physics, and
relativistic heavy-ion collisions. As an example of the intimate connections
between astrophysics and heavy-ion collision physics, this Chapter gives an
overview of the physical properties of SQM in bulk and of small-baryon number
strangelets; discusses the possible formation, destruction, and implications of
lumps of SQM (quark nuggets) in the early Universe; and describes the structure
and signature of strange stars, as well as formation and detection of
strangelets in cosmic rays. It is concluded, that astrophysical and laboratory
searches are complementary in many respects, and that both should be pursued to
test the intriguing possibility of a strange ground state for hadronic matter,
and (more generally) to improve our knowledge of the strong interactions.Comment: 45 pages incl. figures. To appear in "Hadrons in Dense Matter and
Hadrosynthesis", Lecture Notes in Physics, Springer Verlag (ed. J.Cleymans
- …
