1,100 research outputs found
On the form of growing strings
Patterns and forms adopted by Nature, such as the shape of living cells, the
geometry of shells and the branched structure of plants, are often the result
of simple dynamical paradigms. Here we show that a growing self-interacting
string attached to a tracking origin, modeled to resemble nascent polypeptides
in vivo, develops helical structures which are more pronounced at the growing
end. We also show that the dynamic growth ensemble shares several features of
an equilibrium ensemble in which the growing end of the polymer is under an
effective stretching force. A statistical analysis of native states of proteins
shows that the signature of this non-equilibrium phenomenon has been fixed by
evolution at the C-terminus, the growing end of a nascent protein. These
findings suggest that a generic non-equilibrium growth process might have
provided an additional evolutionary advantage for nascent proteins by favoring
the preferential selection of helical structures.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. Let
Walks of molecular motors in two and three dimensions
Molecular motors interacting with cytoskeletal filaments undergo peculiar
random walks consisting of alternating sequences of directed movements along
the filaments and diffusive motion in the surrounding solution. An ensemble of
motors is studied which interacts with a single filament in two and three
dimensions. The time evolution of the probability distribution for the bound
and unbound motors is determined analytically. The diffusion of the motors is
strongly enhanced parallel to the filament. The analytical expressions are in
excellent agreement with the results of Monte Carlo simulations.Comment: 7 pages, 2 figures, to be published in Europhys. Let
Beeping a Maximal Independent Set
We consider the problem of computing a maximal independent set (MIS) in an
extremely harsh broadcast model that relies only on carrier sensing. The model
consists of an anonymous broadcast network in which nodes have no knowledge
about the topology of the network or even an upper bound on its size.
Furthermore, it is assumed that an adversary chooses at which time slot each
node wakes up. At each time slot a node can either beep, that is, emit a
signal, or be silent. At a particular time slot, beeping nodes receive no
feedback, while silent nodes can only differentiate between none of its
neighbors beeping, or at least one of its neighbors beeping.
We start by proving a lower bound that shows that in this model, it is not
possible to locally converge to an MIS in sub-polynomial time. We then study
four different relaxations of the model which allow us to circumvent the lower
bound and find an MIS in polylogarithmic time. First, we show that if a
polynomial upper bound on the network size is known, it is possible to find an
MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by
neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if
in addition to this wakeup assumption we allow sender-side collision detection,
that is, beeping nodes can distinguish whether at least one neighboring node is
beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if
instead we endow nodes with synchronous clocks, it is also possible to find an
MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192
Finite size effects and error-free communication in Gaussian channels
The efficacy of a specially constructed Gallager-type error-correcting code
to communication in a Gaussian channel is being examined. The construction is
based on the introduction of complex matrices, used in both encoding and
decoding, which comprise sub-matrices of cascading connection values. The
finite size effects are estimated for comparing the results to the bounds set
by Shannon. The critical noise level achieved for certain code-rates and
infinitely large systems nearly saturates the bounds set by Shannon even when
the connectivity used is low
Statistical Physics of Irregular Low-Density Parity-Check Codes
Low-density parity-check codes with irregular constructions have been
recently shown to outperform the most advanced error-correcting codes to date.
In this paper we apply methods of statistical physics to study the typical
properties of simple irregular codes.
We use the replica method to find a phase transition which coincides with
Shannon's coding bound when appropriate parameters are chosen.
The decoding by belief propagation is also studied using statistical physics
arguments; the theoretical solutions obtained are in good agreement with
simulations. We compare the performance of irregular with that of regular codes
and discuss the factors that contribute to the improvement in performance.Comment: 20 pages, 9 figures, revised version submitted to JP
Statistical Mechanics Analysis of LDPC Coding in MIMO Gaussian Channels
Using analytical methods of statistical mechanics, we analyse the typical
behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with
binary inputs under LDPC network coding and joint decoding. The saddle point
equations for the replica symmetric solution are found in particular
realizations of this channel, including a small and large number of
transmitters and receivers. In particular, we examine the cases of a single
transmitter, a single receiver and the symmetric and asymmetric interference
channels. Both dynamical and thermodynamical transitions from the ferromagnetic
solution of perfect decoding to a non-ferromagnetic solution are identified for
the cases considered, marking the practical and theoretical limits of the
system under the current coding scheme. Numerical results are provided, showing
the typical level of improvement/deterioration achieved with respect to the
single transmitter/receiver result, for the various cases.Comment: 25 pages, 7 figure
Quantum Portfolios
Quantum computation holds promise for the solution of many intractable
problems. However, since many quantum algorithms are stochastic in nature they
can only find the solution of hard problems probabilistically. Thus the
efficiency of the algorithms has to be characterized both by the expected time
to completion {\it and} the associated variance. In order to minimize both the
running time and its uncertainty, we show that portfolios of quantum algorithms
analogous to those of finance can outperform single algorithms when applied to
the NP-complete problems such as 3-SAT.Comment: revision includes additional data and corrects minor typo
On the Gold Standard for Security of Universal Steganography
While symmetric-key steganography is quite well understood both in the
information-theoretic and in the computational setting, many fundamental
questions about its public-key counterpart resist persistent attempts to solve
them. The computational model for public-key steganography was proposed by von
Ahn and Hopper in EUROCRYPT 2004. At TCC 2005, Backes and Cachin gave the first
universal public-key stegosystem - i.e. one that works on all channels -
achieving security against replayable chosen-covertext attacks (SS-RCCA) and
asked whether security against non-replayable chosen-covertext attacks (SS-CCA)
is achievable. Later, Hopper (ICALP 2005) provided such a stegosystem for every
efficiently sampleable channel, but did not achieve universality. He posed the
question whether universality and SS-CCA-security can be achieved
simultaneously. No progress on this question has been achieved since more than
a decade. In our work we solve Hopper's problem in a somehow complete manner:
As our main positive result we design an SS-CCA-secure stegosystem that works
for every memoryless channel. On the other hand, we prove that this result is
the best possible in the context of universal steganography. We provide a
family of 0-memoryless channels - where the already sent documents have only
marginal influence on the current distribution - and prove that no
SS-CCA-secure steganography for this family exists in the standard
non-look-ahead model.Comment: EUROCRYPT 2018, llncs styl
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
On the dynamics of the glass transition on Bethe lattices
The Glauber dynamics of disordered spin models with multi-spin interactions
on sparse random graphs (Bethe lattices) is investigated. Such models undergo a
dynamical glass transition upon decreasing the temperature or increasing the
degree of constrainedness. Our analysis is based upon a detailed study of large
scale rearrangements which control the slow dynamics of the system close to the
dynamical transition. Particular attention is devoted to the neighborhood of a
zero temperature tricritical point.
Both the approach and several key results are conjectured to be valid in a
considerably more general context.Comment: 56 pages, 38 eps figure
- …
