10,939 research outputs found

    Scheme for teleportation of quantum states onto a mechanical resonator

    Full text link
    We propose an experimentally feasible scheme to teleport an unkown quantum state onto the vibrational degree of freedom of a macroscopic mirror. The quantum channel between the two parties is established by exploiting radiation pressure effects.Comment: 5 pages, 2 figures, in press on PR

    Quantum State Reconstruction of a Bose-Einstein Condensate

    Get PDF
    We propose a tomographic scheme to reconstruct the quantum state of a Bose-Einstein condensate, exploiting the radiation field as a probe and considering the atomic internal degrees of freedom. The density matrix in the number state basis can be directly retrieved from the atom counting probabilities.Comment: 11 pages, LaTeX file, no figures, to appear in Europhysics Letter

    A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method

    Full text link
    We have investigated the antiferromagnetic phase of the 2D, the 3D and the extended Hubbard models on a bipartite cubic lattice by means of the Composite Operator Method within a two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as regards the antiferromagnetic and the paramagnetic phases, has been drawn. We firstly reported, within a pole approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase. This latter is restricted to a very small region near half filling and has, in contrast to what has been found by similar approaches, a finite critical Coulomb interaction as lower bound at half filling. Finally, it is worth noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic correlations and another coming from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.

    Pattern formation without heating in an evaporative convection experiment

    Get PDF
    We present an evaporation experiment in a single fluid layer. When latent heat associated to the evaporation is large enough, the heat flow through the free surface of the layer generates temperature gradients that can destabilize the conductive motionless state giving rise to convective cellular structures without any external heating. The sequence of convective patterns obtained here without heating, is similar to that obtained in B\'enard-Marangoni convection. This work present the sequence of spatial bifurcations as a function of the layer depth. The transition between square to hexagonal pattern, known from non-evaporative experiments, is obtained here with a similar change in wavelength.Comment: Submitted to Europhysics Letter

    Synthesis and characterization of entangled mesoscopic superpositions for a trapped electron

    Get PDF
    We propose a scheme for the generation and reconstruction of entangled states between the internal and external (motional) degrees of freedom of a trapped electron. Such states also exhibit quantum coherence at a mesoscopic level.Comment: 4 pages, 1 figure, RevTeX (twocolumn

    Back-action cancellation in interferometers by quantum locking

    Get PDF
    We show that back-action noise in interferometric measurements such as gravitational-waves detectors can be completely suppressed by a local control of mirrors motion. An optomechanical sensor with an optimized measurement strategy is used to monitor mirror displacements. A feedback loop then eliminates radiation-pressure effects without adding noise. This very efficient technique leads to an increased sensitivity for the interferometric measurement, which becomes only limited by phase noise. Back-action cancellation is furthermore insensitive to losses in the interferometer.Comment: 4 pages, 3 figures, RevTe

    Quantum Characterization of a Werner-like Mixture

    Full text link
    We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277 (1989)] by considering two correlated but different degrees of freedom, one with discrete variables and the other with continuous variables. We evaluate the mixedness of this state, and its degree of entanglement establishing its usefulness for quantum information processing like quantum teleportation. Then, we provide its tomographic characterization. Finally, we show how such a mixture can be generated and measured in a trapped system like one electron in a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure

    Motional Squashed States

    Full text link
    We show that by using a feedback loop it is possible to reduce the fluctuations in one quadrature of the vibrational degree of freedom of a trapped ion below the quantum limit. The stationary state is not a proper squeezed state, but rather a ``squashed'' state, since the uncertainty in the orthogonal quadrature, which is larger than the standard quantum limit, is unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum Correlations and Fluctuations" of J. Opt.

    The Pauli Equation for Probability Distributions

    Full text link
    The "marginal" distributions for measurable coordinate and spin projection is introduced. Then, the analog of the Pauli equation for spin-1/2 particle is obtained for such probability distributions instead of the usual wave functions. That allows a classical-like approach to quantum mechanics. Some illuminating examples are presented.Comment: 14 pages, ReVTe
    corecore