10,939 research outputs found
Scheme for teleportation of quantum states onto a mechanical resonator
We propose an experimentally feasible scheme to teleport an unkown quantum
state onto the vibrational degree of freedom of a macroscopic mirror. The
quantum channel between the two parties is established by exploiting radiation
pressure effects.Comment: 5 pages, 2 figures, in press on PR
Quantum State Reconstruction of a Bose-Einstein Condensate
We propose a tomographic scheme to reconstruct the quantum state of a
Bose-Einstein condensate, exploiting the radiation field as a probe and
considering the atomic internal degrees of freedom. The density matrix in the
number state basis can be directly retrieved from the atom counting
probabilities.Comment: 11 pages, LaTeX file, no figures, to appear in Europhysics Letter
A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method
We have investigated the antiferromagnetic phase of the 2D, the 3D and the
extended Hubbard models on a bipartite cubic lattice by means of the Composite
Operator Method within a two-pole approximation. This approach yields a fully
self-consistent treatment of the antiferromagnetic state that respects the
symmetry properties of both the model and the algebra. The complete phase
diagram, as regards the antiferromagnetic and the paramagnetic phases, has been
drawn. We firstly reported, within a pole approximation, three kinds of
transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We
have also found a metal-insulator transition, driven by doping, within the
antiferromagnetic phase. This latter is restricted to a very small region near
half filling and has, in contrast to what has been found by similar approaches,
a finite critical Coulomb interaction as lower bound at half filling. Finally,
it is worth noting that our antiferromagnetic gap has two independent
components: one due to the antiferromagnetic correlations and another coming
from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.
Pattern formation without heating in an evaporative convection experiment
We present an evaporation experiment in a single fluid layer. When latent
heat associated to the evaporation is large enough, the heat flow through the
free surface of the layer generates temperature gradients that can destabilize
the conductive motionless state giving rise to convective cellular structures
without any external heating. The sequence of convective patterns obtained here
without heating, is similar to that obtained in B\'enard-Marangoni convection.
This work present the sequence of spatial bifurcations as a function of the
layer depth. The transition between square to hexagonal pattern, known from
non-evaporative experiments, is obtained here with a similar change in
wavelength.Comment: Submitted to Europhysics Letter
Synthesis and characterization of entangled mesoscopic superpositions for a trapped electron
We propose a scheme for the generation and reconstruction of entangled states
between the internal and external (motional) degrees of freedom of a trapped
electron. Such states also exhibit quantum coherence at a mesoscopic level.Comment: 4 pages, 1 figure, RevTeX (twocolumn
Back-action cancellation in interferometers by quantum locking
We show that back-action noise in interferometric measurements such as
gravitational-waves detectors can be completely suppressed by a local control
of mirrors motion. An optomechanical sensor with an optimized measurement
strategy is used to monitor mirror displacements. A feedback loop then
eliminates radiation-pressure effects without adding noise. This very efficient
technique leads to an increased sensitivity for the interferometric
measurement, which becomes only limited by phase noise. Back-action
cancellation is furthermore insensitive to losses in the interferometer.Comment: 4 pages, 3 figures, RevTe
Quantum Characterization of a Werner-like Mixture
We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277
(1989)] by considering two correlated but different degrees of freedom, one
with discrete variables and the other with continuous variables. We evaluate
the mixedness of this state, and its degree of entanglement establishing its
usefulness for quantum information processing like quantum teleportation. Then,
we provide its tomographic characterization. Finally, we show how such a
mixture can be generated and measured in a trapped system like one electron in
a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure
Motional Squashed States
We show that by using a feedback loop it is possible to reduce the
fluctuations in one quadrature of the vibrational degree of freedom of a
trapped ion below the quantum limit. The stationary state is not a proper
squeezed state, but rather a ``squashed'' state, since the uncertainty in the
orthogonal quadrature, which is larger than the standard quantum limit, is
unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum
Correlations and Fluctuations" of J. Opt.
The Pauli Equation for Probability Distributions
The "marginal" distributions for measurable coordinate and spin projection is
introduced. Then, the analog of the Pauli equation for spin-1/2 particle is
obtained for such probability distributions instead of the usual wave
functions. That allows a classical-like approach to quantum mechanics. Some
illuminating examples are presented.Comment: 14 pages, ReVTe
- …
