543 research outputs found
Escherichia coli contamination and health aspects of soil and tomatoes (Solanum lycopersicum L.) subsurface drip irrigated with on-site treated domestic wastewater.
Faecal contamination of soil and tomatoes irrigated by sprinkler as well as surface and subsurface drip irrigation with treated domestic wastewater were compared in 2007 and 2008 at experimental sites in Crete and Italy. Wastewater was treated by Membrane Bio Reactor (MBR) technology, gravel filtration or UV-treatment before used for irrigation. Irrigation water, soil and tomato samples were collected during two cropping seasons and enumerated for the faecal indicator bacterium Escherichia coli and helminth eggs. The study found elevated levels of E. coli in irrigation water (mean: Italy 1753 cell forming unit (cfu) per 100 ml and Crete 488 cfu per 100 ml) and low concentrations of E. coli in soil (mean: Italy 95 cfu g(-1) and Crete 33 cfu g(-1)). Only two out of 84 tomato samples in Crete contained E. coli (mean: 2700 cfu g(-1)) while tomatoes from Italy were free of E. coli. No helminth eggs were found in the irrigation water or on the tomatoes from Crete. Two tomato samples out of 36 from Italy were contaminated by helminth eggs (mean: 0.18 eggs g(-1)) and had been irrigated with treated wastewater and tap water, respectively. Pulsed Field Gel Electrophoresis DNA fingerprints of E. coli collected during 2008 showed no identical pattern between water and soil isolates which indicates contribution from other environmental sources with E. coli, e.g. wildlife. A quantitative microbial risk assessment (QMRA) model with Monte Carlo simulations adopted by the World Health Organization (WHO) found the use of tap water and treated wastewater to be associated with risks that exceed permissible limits as proposed by the WHO (1.0 × 10(-3) disease risk per person per year) for the accidental ingestion of irrigated soil by farmers (Crete: 0.67 pppy and Italy: 1.0 pppy). The QMRA found that the consumption of tomatoes in Italy was deemed to be safe while permissible limits were exceeded in Crete (1.0 pppy). Overall the quality of tomatoes was safe for human consumption since the disease risk found on Crete was based on only two contaminated tomato samples. It is a fundamental limitation of the WHO QMRA model that it is not based on actual pathogen numbers, but rather on numbers of E. coli converted to estimated pathogen numbers, since it is widely accepted that there is poor correlation between E. coli and viral and parasite pathogens. Our findings also stress the importance of the external environment, typically wildlife, as sources of faecal contamination
Ab initio vibrations in nonequilibrium nanowires
We review recent results on electronic and thermal transport in two different
quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains.
For SiNW's we compute the ballistic electronic and thermal transport properties
on equal footing, allowing us to make quantitative predictions for the
thermoelectric properties, while for the atomic gold chains we evaluate
microscopically the damping of the vibrations, due to the coupling of the chain
atoms to the modes in the bulk contacts. Both approaches are based on a
combination of density-functional theory, and nonequilibrium Green's functions.Comment: 16 pages, to appear in Progress in Nonequilibrium Green's Functions
IV (PNGF4), Eds. M. Bonitz and K. Baltzer, Glasgow, August 200
Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel
Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia
The glycerol Biorefinery: Valorization of crude glycerol through its conversion into biofuels and green chemicals by mixed microbial consortia
Corrigendum to "Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel"
Report and preliminary results of R/V POSEIDON cruise POS481, Las Palmas (Canary Islands) - Las Palmas (Canary Islands), 15.03.2015 - 03.03.2015
Statistical M-Estimation and Consistency in Large Deformable Models for Image Warping
The problem of defining appropriate distances between shapes or images and modeling the variability of natural images by group transformations is at the heart of modern image analysis. A current trend is the study of probabilistic and statistical aspects of deformation models, and the development of consistent statistical procedure for the estimation of template images. In this paper, we consider a set of images randomly warped from a mean template which has to be recovered. For this, we define an appropriate statistical parametric model to generate random diffeomorphic deformations in two-dimensions. Then, we focus on the problem of estimating the mean pattern when the images are observed with noise. This problem is challenging both from a theoretical and a practical point of view. M-estimation theory enables us to build an estimator defined as a minimizer of a well-tailored empirical criterion. We prove the convergence of this estimator and propose a gradient descent algorithm to compute this M-estimator in practice. Simulations of template extraction and an application to image clustering and classification are also provided
QuantumATK: An integrated platform of electronic and atomic-scale modelling tools
QuantumATK is an integrated set of atomic-scale modelling tools developed
since 2003 by professional software engineers in collaboration with academic
researchers. While different aspects and individual modules of the platform
have been previously presented, the purpose of this paper is to give a general
overview of the platform. The QuantumATK simulation engines enable
electronic-structure calculations using density functional theory or
tight-binding model Hamiltonians, and also offers bonded or reactive empirical
force fields in many different parametrizations. Density functional theory is
implemented using either a plane-wave basis or expansion of electronic states
in a linear combination of atomic orbitals. The platform includes a long list
of advanced modules, including Green's-function methods for electron transport
simulations and surface calculations, first-principles electron-phonon and
electron-photon couplings, simulation of atomic-scale heat transport, ion
dynamics, spintronics, optical properties of materials, static polarization,
and more. Seamless integration of the different simulation engines into a
common platform allows for easy combination of different simulation methods
into complex workflows. Besides giving a general overview and presenting a
number of implementation details not previously published, we also present four
different application examples. These are calculations of the phonon-limited
mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model
simulation of lithium ion drift through a battery cathode in an external
electric field, and electronic-structure calculations of the
composition-dependent band gap of SiGe alloys.Comment: Submitted to Journal of Physics: Condensed Matte
Numerical study of the thermoelectric power factor in ultra-thin Si nanowires
Low dimensional structures have demonstrated improved thermoelectric (TE)
performance because of a drastic reduction in their thermal conductivity,
{\kappa}l. This has been observed for a variety of materials, even for
traditionally poor thermoelectrics such as silicon. Other than the reduction in
{\kappa}l, further improvements in the TE figure of merit ZT could potentially
originate from the thermoelectric power factor. In this work, we couple the
ballistic (Landauer) and diffusive linearized Boltzmann electron transport
theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB)
electronic structure model. We calculate the room temperature electrical
conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires
(NWs). We describe the numerical formulation of coupling TB to those transport
formalisms, the approximations involved, and explain the differences in the
conclusions obtained from each model. We investigate the effects of cross
section size, transport orientation and confinement orientation, and the
influence of the different scattering mechanisms. We show that such methodology
can provide robust results for structures including thousands of atoms in the
simulation domain and extending to length scales beyond 10nm, and point towards
insightful design directions using the length scale and geometry as a design
degree of freedom. We find that the effect of low dimensionality on the
thermoelectric power factor of Si NWs can be observed at diameters below ~7nm,
and that quantum confinement and different transport orientations offer the
possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201
A saturated consensus linkage map of Picea abies including AFLP, SSR, STS, 5S rDNA and morphological markers
International audienc
- …
