2,615 research outputs found

    Theory of melting at high pressures: Amending Density Functional Theory with Quantum Monte Carlo

    Full text link
    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data

    Supernovae data and perturbative deviation from homogeneity

    Full text link
    We show that a spherically symmetric perturbation of a dust dominated Ω=1\Omega=1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated, minor modifications and clarifications, matches published versio

    Back-reaction and effective acceleration in generic LTB dust models

    Full text link
    We provide a thorough examination of the conditions for the existence of back-reaction and an "effective" acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains, we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the boundary of every domain. Effective deceleration necessarily occurs in all domains in: (a) the asymptotic radial range of models converging to a FLRW background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial range of models converging to a FLRW background, (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v) domains near and/or intersecting a non-simultaneous big bang. All these scenarios occur in hyperbolic models with negative averaged and local spatial curvature, though scenarios (iv) and (v) are also possible in low density regions of a class of elliptic models in which local spatial curvature is negative but its average is positive. Rough numerical estimates between -0.003 and -0.5 were found for the effective deceleration parameter. While the existence of accelerating domains cannot be ruled out in models converging to an Einstein de Sitter background and in domains undergoing gravitational collapse, the conditions for this are very restrictive. The results obtained may provide important theoretical clues on the effects of back-reaction and averaging in more general non-spherical models.Comment: Final version accepted for publication in Classical and Quantum Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure

    Weighed scalar averaging in LTB dust models, part I: statistical fluctuations and gravitational entropy

    Full text link
    We introduce a weighed scalar average formalism ("q-average") for the study of the theoretical properties and the dynamics of spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models models. The "q-scalars" that emerge by applying the q-averages to the density, Hubble expansion and spatial curvature (which are common to FLRW models) are directly expressible in terms of curvature and kinematic invariants and identically satisfy FLRW evolution laws without the back-reaction terms that characterize Buchert's average. The local and non-local fluctuations and perturbations with respect to the q-average convey the effects of inhomogeneity through the ratio of curvature and kinematic invariants and the magnitude of radial gradients. All curvature and kinematic proper tensors that characterize the models are expressible as irreducible algebraic expansions on the metric and 4-velocity, whose coefficients are the q-scalars and their linear and quadratic local fluctuations. All invariant contractions of these tensors are quadratic fluctuations, whose q-averages are directly and exactly related to statistical correlation moments of the density and Hubble expansion scalar. We explore the application of this formalism to a definition of a gravitational entropy functional proposed by Hosoya et al (2004 Phys. Rev. Lett. 92 141302). We show that a positive entropy production follows from a negative correlation between fluctuations of the density and Hubble scalar, providing a brief outline on its fulfillment in various LTB models and regions. While the q-average formalism is specially suited for LTB and Szekeres models, it may provide a valuable theoretical insight on the properties of scalar averaging in inhomogeneous spacetimes in general.Comment: 27 pages in IOP format, 1 figure. Matches version accepted for publication in Classical and Quantum Gravit

    Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/ccm

    Full text link
    Recently there has been tremendous increase in the number of identified extra-solar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds like water. Here we present shock compression data for water with unprecedented accuracy that shows water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate this water model be used as the standard for modeling Neptune, Uranus, and "hot Neptune" exoplanets, and should improve our understanding of these types of planets.Comment: Accepted to Phys. Rev. Lett.; supplementary material attached including 2 figures and 2 tables; to view attachments, please download and extract the gzipped tar source file listed under "Other formats

    Edge Logarithmic Corrections probed by Impurity NMR

    Get PDF
    Semi-infinite quantum spin chains display spin autocorrelations near the boundary with power-law exponents that are given by boundary conformal field theories. We show that NMR measurements on spinless impurities that break a quantum spin chain lead to a spin-lattice relaxation rate 1/T_1^edge that has a temperature dependence which is a direct probe of the anomalous boundary exponents. For the antiferromagnetic S=1/2 spin chain, we show that 1/T_1^edge behaves as T (log T)^2 instead of (log T)^1/2 for a bulk measurement. We show that, in the case of a one-dimensional conductor described by a Luttinger liquid, a similar measurement leads to a relaxation rate 1/T_1^{edge} behaving as T, independent of the anomalous exponent K_rho.Comment: 4 pages, 1 encapsulated figure, corrected typo

    The nanoscale phase separation in hole-doped manganites

    Full text link
    A macroscopic phase separation, in which ferromagnetic clusters are observed in an insulating matrix, is sometimes observed, and believed to be essential to the colossal magnetoresistive (CMR) properties of manganese oxides. The application of a magnetic field may indeed trigger large magnetoresistance effects due to the percolation between clusters allowing the movement of the charge carriers. However, this macroscopic phase separation is mainly related to extrinsic defects or impurities, which hinder the long-ranged charge-orbital order of the system. We show in the present article that rather than the macroscopic phase separation, an homogeneous short-ranged charge-orbital order accompanied by a spin glass state occurs, as an intrinsic result of the uniformity of the random potential perturbation induced by the solid solution of the cations on the AA-sites of the structure of these materials. Hence the phase separation does occur, but in a more subtle and interesting nanoscopic form, here referred as ``homogeneous''. Remarkably, this ``nanoscale phase separation'' alone is able to bring forth the colossal magnetoresistance in the perovskite manganites, and is potentially relevant to a wide variety of other magnetic and/or electrical properties of manganites, as well as many other transition metal oxides, in bulk or thin film form as we exemplify throughout the article.Comment: jpsj2 TeX style (J. Phys. Soc. Jpn); 18 pages, 7 figure

    Relaxation of the field-cooled magnetization of an Ising spin glass

    Full text link
    The time and temperature dependence of the field-cooled magnetization of a three dimensional Ising spin glass, Fe_{0.5}Mn_{0.5}TiO_{3}, has been investigated. The temperature and cooling rate dependence is found to exhibit memory phenomena that can be related to the memory behavior of the low frequency ac-susceptibility. The results add some further understanding on how to model the three dimensional Ising spin glass in real space.Comment: 8 pages RevTEX, 5 figure

    Would You Choose to be Happy? Tradeoffs Between Happiness and the Other Dimensions of Life in a Large Population Survey

    Get PDF
    A large literature documents the correlates and causes of subjective well-being, or happiness. But few studies have investigated whether people choose happiness. Is happiness all that people want from life, or are they willing to sacrifice it for other attributes, such as income and health? Tackling this question has largely been the preserve of philosophers. In this article, we find out just how much happiness matters to ordinary citizens. Our sample consists of nearly 13,000 members of the UK and US general populations. We ask them to choose between, and make judgments over, lives that are high (or low) in different types of happiness and low (or high) in income, physical health, family, career success, or education. We find that people by and large choose the life that is highest in happiness but health is by far the most important other concern, with considerable numbers of people choosing to be healthy rather than happy. We discuss some possible reasons for this preference
    corecore