2,615 research outputs found
Theory of melting at high pressures: Amending Density Functional Theory with Quantum Monte Carlo
We present an improved first-principles description of melting under pressure
based on thermodynamic integration comparing Density Functional Theory (DFT)
and quantum Monte Carlo (QMC) treatments of the system. The method is applied
to address the longstanding discrepancy between density functional theory (DFT)
calculations and diamond anvil cell (DAC) experiments on the melting curve of
xenon, a noble gas solid where van der Waals binding is challenging for
traditional DFT methods. The calculations show excellent agreement with data
below 20 GPa and that the high-pressure melt curve is well described by a
Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC
data
Supernovae data and perturbative deviation from homogeneity
We show that a spherically symmetric perturbation of a dust dominated
FRW universe in the Newtonian gauge can lead to an apparent
acceleration of standard candles and provide a fit to the magnitude-redshift
relation inferred from the supernovae data, while the perturbation in the
gravitational potential remains small at all scales. We also demonstrate that
the supernovae data does not necessarily imply the presence of some additional
non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model
fitting the supernovae data (with appropriate initial conditions) will be
equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated,
minor modifications and clarifications, matches published versio
Back-reaction and effective acceleration in generic LTB dust models
We provide a thorough examination of the conditions for the existence of
back-reaction and an "effective" acceleration (in the context of Buchert's
averaging formalism) in regular generic spherically symmetric
Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical
comoving domains, we verify rigorously the fulfillment of these conditions
expressed in terms of suitable scalar variables that are evaluated at the
boundary of every domain. Effective deceleration necessarily occurs in all
domains in: (a) the asymptotic radial range of models converging to a FLRW
background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c)
LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating
domains are proven to exist in the following scenarios: (i) central vacuum
regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial
range of models converging to a FLRW background, (iv) the asymptotic radial
range of models converging to a Minkowski vacuum and (v) domains near and/or
intersecting a non-simultaneous big bang. All these scenarios occur in
hyperbolic models with negative averaged and local spatial curvature, though
scenarios (iv) and (v) are also possible in low density regions of a class of
elliptic models in which local spatial curvature is negative but its average is
positive. Rough numerical estimates between -0.003 and -0.5 were found for the
effective deceleration parameter. While the existence of accelerating domains
cannot be ruled out in models converging to an Einstein de Sitter background
and in domains undergoing gravitational collapse, the conditions for this are
very restrictive. The results obtained may provide important theoretical clues
on the effects of back-reaction and averaging in more general non-spherical
models.Comment: Final version accepted for publication in Classical and Quantum
Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure
Weighed scalar averaging in LTB dust models, part I: statistical fluctuations and gravitational entropy
We introduce a weighed scalar average formalism ("q-average") for the study
of the theoretical properties and the dynamics of spherically symmetric
Lemaitre-Tolman-Bondi (LTB) dust models models. The "q-scalars" that emerge by
applying the q-averages to the density, Hubble expansion and spatial curvature
(which are common to FLRW models) are directly expressible in terms of
curvature and kinematic invariants and identically satisfy FLRW evolution laws
without the back-reaction terms that characterize Buchert's average. The local
and non-local fluctuations and perturbations with respect to the q-average
convey the effects of inhomogeneity through the ratio of curvature and
kinematic invariants and the magnitude of radial gradients. All curvature and
kinematic proper tensors that characterize the models are expressible as
irreducible algebraic expansions on the metric and 4-velocity, whose
coefficients are the q-scalars and their linear and quadratic local
fluctuations. All invariant contractions of these tensors are quadratic
fluctuations, whose q-averages are directly and exactly related to statistical
correlation moments of the density and Hubble expansion scalar. We explore the
application of this formalism to a definition of a gravitational entropy
functional proposed by Hosoya et al (2004 Phys. Rev. Lett. 92 141302). We show
that a positive entropy production follows from a negative correlation between
fluctuations of the density and Hubble scalar, providing a brief outline on its
fulfillment in various LTB models and regions. While the q-average formalism is
specially suited for LTB and Szekeres models, it may provide a valuable
theoretical insight on the properties of scalar averaging in inhomogeneous
spacetimes in general.Comment: 27 pages in IOP format, 1 figure. Matches version accepted for
publication in Classical and Quantum Gravit
Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/ccm
Recently there has been tremendous increase in the number of identified
extra-solar planetary systems. Our understanding of their formation is tied to
exoplanet internal structure models, which rely upon equations of state of
light elements and compounds like water. Here we present shock compression data
for water with unprecedented accuracy that shows water equations of state
commonly used in planetary modeling significantly overestimate the
compressibility at conditions relevant to planetary interiors. Furthermore, we
show its behavior at these conditions, including reflectivity and isentropic
response, is well described by a recent first-principles based equation of
state. These findings advocate this water model be used as the standard for
modeling Neptune, Uranus, and "hot Neptune" exoplanets, and should improve our
understanding of these types of planets.Comment: Accepted to Phys. Rev. Lett.; supplementary material attached
including 2 figures and 2 tables; to view attachments, please download and
extract the gzipped tar source file listed under "Other formats
Edge Logarithmic Corrections probed by Impurity NMR
Semi-infinite quantum spin chains display spin autocorrelations near the
boundary with power-law exponents that are given by boundary conformal field
theories. We show that NMR measurements on spinless impurities that break a
quantum spin chain lead to a spin-lattice relaxation rate 1/T_1^edge that has a
temperature dependence which is a direct probe of the anomalous boundary
exponents. For the antiferromagnetic S=1/2 spin chain, we show that 1/T_1^edge
behaves as T (log T)^2 instead of (log T)^1/2 for a bulk measurement. We show
that, in the case of a one-dimensional conductor described by a Luttinger
liquid, a similar measurement leads to a relaxation rate 1/T_1^{edge} behaving
as T, independent of the anomalous exponent K_rho.Comment: 4 pages, 1 encapsulated figure, corrected typo
The nanoscale phase separation in hole-doped manganites
A macroscopic phase separation, in which ferromagnetic clusters are observed
in an insulating matrix, is sometimes observed, and believed to be essential to
the colossal magnetoresistive (CMR) properties of manganese oxides. The
application of a magnetic field may indeed trigger large magnetoresistance
effects due to the percolation between clusters allowing the movement of the
charge carriers. However, this macroscopic phase separation is mainly related
to extrinsic defects or impurities, which hinder the long-ranged charge-orbital
order of the system. We show in the present article that rather than the
macroscopic phase separation, an homogeneous short-ranged charge-orbital order
accompanied by a spin glass state occurs, as an intrinsic result of the
uniformity of the random potential perturbation induced by the solid solution
of the cations on the -sites of the structure of these materials. Hence the
phase separation does occur, but in a more subtle and interesting nanoscopic
form, here referred as ``homogeneous''. Remarkably, this ``nanoscale phase
separation'' alone is able to bring forth the colossal magnetoresistance in the
perovskite manganites, and is potentially relevant to a wide variety of other
magnetic and/or electrical properties of manganites, as well as many other
transition metal oxides, in bulk or thin film form as we exemplify throughout
the article.Comment: jpsj2 TeX style (J. Phys. Soc. Jpn); 18 pages, 7 figure
Relaxation of the field-cooled magnetization of an Ising spin glass
The time and temperature dependence of the field-cooled magnetization of a
three dimensional Ising spin glass, Fe_{0.5}Mn_{0.5}TiO_{3}, has been
investigated. The temperature and cooling rate dependence is found to exhibit
memory phenomena that can be related to the memory behavior of the low
frequency ac-susceptibility. The results add some further understanding on how
to model the three dimensional Ising spin glass in real space.Comment: 8 pages RevTEX, 5 figure
Would You Choose to be Happy? Tradeoffs Between Happiness and the Other Dimensions of Life in a Large Population Survey
A large literature documents the correlates and causes of subjective well-being, or happiness. But few studies have investigated whether people choose happiness. Is happiness all that people want from life, or are they willing to sacrifice it for other attributes, such as income and health? Tackling this question has largely been the preserve of philosophers. In this article, we find out just how much happiness matters to ordinary citizens. Our sample consists of nearly 13,000 members of the UK and US general populations. We ask them to choose between, and make judgments over, lives that are high (or low) in different types of happiness and low (or high) in income, physical health, family, career success, or education. We find that people by and large choose the life that is highest in happiness but health is by far the most important other concern, with considerable numbers of people choosing to be healthy rather than happy. We discuss some possible reasons for this preference
- …
