1,652 research outputs found
Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique
We designed a new method for preparation of liquid marbles by using hydrophilic particles. Salt–hydrogel marbles were prepared by atomising droplets of hydrogel solution in a cold air column followed by rolling of the collected hydrogel microbeads in a bed of micrometre sized salt particles. Evaporation of the water from the resulting salt marbles with a hydrogel core yielded hollow-shell salt microcapsules. The method is not limited to hydrophilic particles and could potentially be also applied to particles of other materials, such as graphite, carbon black, silica and others. The structure and morphology of the salt–hydrogel marbles were analysed by SEM and their particle size distributions were measured. We also tested the dissolution times of the dried salt marbles and compared them with those of table salt samples under the same conditions. The high accessible surface area of the shell of salt microcrystals allows a faster initial release of salt from the hollow-shell salt capsules upon their dissolution in water than from the same amount of table salt. The results suggest that such hollow-shell particles could find applications as a table salt substitute in dry food products and salt seasoning formulations with reduced salt content without the loss of saltiness
Anomalous increase in nematic-isotropic transition temperature in dimer molecules induced by magnetic field
We have determined the nematic-isotropic transition temperature as a function of applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15K when subjected to 22T magnetic field. The increase is conjectured to be caused by a magnetic field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers
Robust ab initio calculation of condensed matter: transparent convergence through semicardinal multiresolution analysis
We present the first wavelet-based all-electron density-functional
calculations to include gradient corrections and the first in a solid. Direct
comparison shows this approach to be unique in providing systematic
``transparent'' convergence, convergence with a priori prediction of errors, to
beyond chemical (millihartree) accuracy. The method is ideal for exploration of
materials under novel conditions where there is little experience with how
traditional methods perform and for the development and use of chemically
accurate density functionals, which demand reliable access to such precision.Comment: 4 pages, 3 figures, 4 tables. Submitted to Phys. Rev. Lett. (updated
to include GGA
Nematic Twist-Bend Phase with Nanoscale Modulation of Molecular Orientation
Peer reviewedPublisher PD
Tight-binding study of high-pressure phase transitions in titanium: alpha to omega and beyond
We use a tight-binding total energy method, with parameters determined from a
fit to first-principles calculations, to examine the newly discovered gamma
phase of titanium. Our parameters were adjusted to accurately describe the
alpha Ti-omega Ti phase transition, which is misplaced by density functional
calculations. We find a transition from omega Ti to gamma Ti at 102 GPa, in
good agreement with the experimental value of 116 GPa. Our results suggest that
current density functional calculations will not reproduce the omega Ti-gamma
Ti phase transition, but will instead predict a transition from omega Ti to the
bcc beta Ti phase.Comment: 3 encapsulated Postscript figures, submitted to Phyical Review
Letter
Spin Hall effect in Sr2RuO4 and transition metals (Nb,Ta)
We study the intrinsic spin Hall conductivity (SHC) and the -orbital Hall
conductivity (OHC) in metallic -electron systems based on the multiorbital
tight-binding model. The obtained Hall conductivities are much larger than that
in -type semiconductors. The origin of these huge Hall effects is the
"effective Aharonov-Bohm phase" induced by the signs of inter-orbital hopping
integrals as well as atomic spin-orbit interaction. Huge SHC and OHC due to
this mecahnism is ubiquitous in multiorbital transition metals.Comment: 4 pages, 3 figures, Proceedings of SNS conference in Sendai, 200
Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles – an experimental and numerical investigation
In this work the mechanisms leading to the enhancement of optical nonlinearity of nematic liquid crystalline material through localized heating by doping the liquid crystals (LCs) with gold nanoparticles (GNPs) are investigated. We present some experimental and theoretical results on the effect of voltage and nanoparticle concentration on the nonlinear response of GNP-LC suspensions. The optical nonlinearity of these systems is characterized by diffraction measurements and the second order nonlinear refractive index, n 2 , is used to compare systems with different configurations and operating conditions. A theoretical model based on heat diffusion that takes into account the intensity and finite size of the incident beam, the nanoparticle concentration dependent absorbance of GNP doped LC systems and the presence of bounding substrates is developed and validated. We use the model to discuss the possibilities of further enhancing the optical nonlinearity
Light scattering study of the “pseudo-layer” compression elastic constant in a twist-bend nematic liquid crystal
The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or “pseudo-layers”, each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining “layer” compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant Keff1. The magnitude of Keff1 is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∼10⁶ Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the “pseudo-layer” structure of the TB phase with Beff in the range 10³–10⁴ Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director
Structural and superconducting properties of MgBBe
We prepared MgBBe (, 0.2, 0.3, 0.4, and 0.6) samples where
B is substituted with Be. MgB structure is maintained up to .
In-plane and inter-plane lattice constants were found to decrease and increase,
respectively. Superconducting transition temperature decreases with
. We found that the decrease is correlated with in-plane contraction
but is insensitive to carrier doping, which is consistent with other
substitution studies such as MgAlB and MgBC.
Implication of this work is discussed in terms of the 2D nature of -band.Comment: 3 pages,4 figures, to be published in Phys. Rev.
An Empirical Charge Transfer Potential with Correct Dissociation Limits
The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has
always embodied charge transfer processes. The mechanism of that behavior is
examined here and recast for use as a new empirical potential energy surface
for large-scale simulations. A two-state model is explored. The main features
of the model are: (1) Explicit decomposition of the total system electron
density is invoked; (2) The charge is defined through the density decomposition
into constituent contributions; (3) The charge transfer behavior is controlled
through the resonance energy matrix elements which cannot be ignored; and (4) A
reference-state approach, similar in spirit to the EVB method, is used to
define the resonance state energy contributions in terms of "knowable"
quantities. With equal validity, the new potential energy can be expressed as a
nonthermal ensemble average with a nonlinear but analytical charge dependence
in the occupation number. Dissociation to neutral species for a gas-phase
process is preserved. A variant of constrained search density functional theory
is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure
- …
