685 research outputs found
Accurate and efficient spin integration for particle accelerators
Accurate spin tracking is a valuable tool for understanding spin dynamics in
particle accelerators and can help improve the performance of an accelerator.
In this paper, we present a detailed discussion of the integrators in the spin
tracking code gpuSpinTrack. We have implemented orbital integrators based on
drift-kick, bend-kick, and matrix-kick splits. On top of the orbital
integrators, we have implemented various integrators for the spin motion. These
integrators use quaternions and Romberg quadratures to accelerate both the
computation and the convergence of spin rotations. We evaluate their
performance and accuracy in quantitative detail for individual elements as well
as for the entire RHIC lattice. We exploit the inherently data-parallel nature
of spin tracking to accelerate our algorithms on graphics processing units.Comment: 43 pages, 17 figure
Fluctuations in the formation time of ultracold dimers from fermionic atoms
We investigate the temporal fluctuations characteristic of the formation of
molecular dimers from ultracold fermionic atoms via Raman photoassociation. The
quantum fluctuations inherent to the initial atomic state result in large
fluctuations in the passage time from atoms to molecules. Assuming degeneracy
of kinetic energies of atoms in the strong coupling limit we find that a
heuristic classical stochastic model yields qualitative agreement with the full
quantum treatment in the initial stages of the dynamics. We also show that in
contrast to the association of atoms into dimers, the reverse process of
dissociation from a condensate of bosonic dimers exhibits little passage time
fluctuations. Finally we explore effects due to the non-degeneracy of atomic
kinetic energies.Comment: 7 pages, 6 figure
Full counting statistics of heteronuclear molecules from Feshbach-assisted photo association
We study the effects of quantum statistics on the counting statistics of
ultracold heteronuclear molecules formed by Feshbach-assisted photoassociation
[Phys. Rev. Lett. {\bf 93}, 140405 (2004)]. Exploiting the formal similarities
with sum frequency generation and using quantum optics methods we consider the
cases where the molecules are formed from atoms out of two Bose-Einstein
condensates, out of a Bose-Einstein condensate and a gas of degenerate
fermions, and out of two degenerate Fermi gases with and without superfluidity.
Bosons are treated in a single mode approximation and fermions in a degenerate
model. In these approximations we can numerically solve the master equations
describing the system's dynamics and thus we find the full counting statistics
of the molecular modes. The full quantum dynamics calculations are complemented
by mean field calculations and short time perturbative expansions. While the
molecule production rates are very similar in all three cases at this level of
approximation, differences show up in the counting statistics of the molecular
fields. The intermediate field of closed-channel molecules is for short times
second-order coherent if the molecules are formed from two Bose-Einstein
condensates or a Bose-Fermi mixture. They show counting statistics similar to a
thermal field if formed from two normal Fermi gases. The coherence properties
of molecule formation in two superfluid Fermi gases are intermediate between
the two previous cases. In all cases the final field of deeply-bound molecules
is found to be twice as noisy as that of the intermediate state. This is a
consequence of its coupling to the lossy optical cavity in our model, which
acts as an input port for quantum noise, much like the situation in an optical
beam splitter.Comment: replacement of earlier manuscript cond-mat/0508080
''Feshbach-assisted photoassociation of ultracold heteronuclear molecules''
with minor revision
Counting statistics of collective photon transmissions
We theoretically study cooperative effects in the steady-state transmission
of photons through a medium of radiators. Using methods from quantum
transport, we find a cross-over in scaling from to in the current and
even higher powers of in the higher cumulants of the photon counting
statistics as a function of the tunable source occupation. The effect should be
observable for atoms confined within a nano-cell with a pumped optical cavity
as photon source.Comment: extended results, 9 pages, 2 figures, to appear in Annals of Physic
Molecule formation as a diagnostic tool for second order correlations of ultra-cold gases
We calculate the momentum distribution and the second-order correlation
function in momentum space, for molecular dimers
that are coherently formed from an ultracold atomic gas by photoassociation or
a Feshbach resonance. We investigate using perturbation theory how the quantum
statistics of the molecules depend on the initial state of the atoms by
considering three different initial states: a Bose-Einstein condensate (BEC), a
normal Fermi gas of ultra-cold atoms, and a BCS-type superfluid Fermi gas. The
cases of strong and weak coupling to the molecular field are discussed. It is
found that BEC and BCS states give rise to an essentially coherent molecular
field with a momentum distribution determined by the zero-point motion in the
confining potential. On the other hand, a normal Fermi gas and the unpaired
atoms in the BCS state give rise to a molecular field with a broad momentum
distribution and thermal number statistics. It is shown that the first-order
correlations of the molecules can be used to measure second-order correlations
of the initial atomic state.Comment: revtex, 15 pages,8 figure
Design and Fabrication of Three-Dimensional Scaffolds for Tissue Engineering of Human Heart Valves
We developed a new fabrication technique for 3-dimensional scaffolds for tissue engineering of human heart valve tissue. A human aortic homograft was scanned with an X-ray computer tomograph. The data derived from the X-ray computed tomogram were processed by a computer-aided design program to reconstruct a human heart valve 3-dimensionally. Based on this stereolithographic model, a silicone valve model resembling a human aortic valve was generated. By taking advantage of the thermoplastic properties of polyglycolic acid as scaffold material, we molded a 3-dimensional scaffold for tissue engineering of human heart valves. The valve scaffold showed a deviation of only +/- 3-4% in height, length and inner diameter compared with the homograft. The newly developed technique allows fabricating custom-made, patient-specific polymeric cardiovascular scaffolds for tissue engineering without requiring any suture materials. Copyright (c) 2008 S. Karger AG, Base
Active optical clock based on four-level quantum system
Active optical clock, a new conception of atomic clock, has been proposed
recently. In this report, we propose a scheme of active optical clock based on
four-level quantum system. The final accuracy and stability of two-level
quantum system are limited by second-order Doppler shift of thermal atomic
beam. To three-level quantum system, they are mainly limited by light shift of
pumping laser field. These limitations can be avoided effectively by applying
the scheme proposed here. Rubidium atom four-level quantum system, as a typical
example, is discussed in this paper. The population inversion between
and states can be built up at a time scale of s.
With the mechanism of active optical clock, in which the cavity mode linewidth
is much wider than that of the laser gain profile, it can output a laser with
quantum-limited linewidth narrower than 1 Hz in theory. An experimental
configuration is designed to realize this active optical clock.Comment: 5 page
Atomic physics: An almost lightless laser
Lasers are often described in terms of a light field circulating in an optical resonator system. Now a laser has been demonstrated in which the field resides primarily in the atomic medium that is used to generate the light
Linear Paul trap design for an optical clock with Coulomb crystals
We report on the design of a segmented linear Paul trap for optical clock
applications using trapped ion Coulomb crystals. For an optical clock with an
improved short-term stability and a fractional frequency uncertainty of 10^-18,
we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the
systematic frequency shifts of such a frequency standard. In particular, we
elaborate on high precision calculations of the electric radiofrequency field
of the ion trap using the finite element method. These calculations are used to
find a scalable design with minimized excess micromotion of the ions at a level
at which the corresponding second- order Doppler shift contributes less than
10^-18 to the relative uncertainty of the frequency standard
- …
