134 research outputs found

    The Impact of Small Molecule Binding on the Energy Landscape of the Intrinsically Disordered Protein C-Myc

    Get PDF
    Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition, structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding 1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically disordered proteins

    Coffee resistance to the main diseases : leaf rust and coffee berry disease

    Get PDF
    Sucesso considerável tem sido obtido no uso do melhoramento clássico para o controle de doenças de plantas economicamente importantes, tais como a ferrugem alaranjada das folhas e a antracnose dos frutos do cafeeiro (CBD). Há um grande consenso de que o uso de plantas geneticamente resistentes é o meio mais apropriado e eficaz em termos de custos do controle das doenças das plantas, sendo também um dos elementos chave do melhoramento da produção agrícola. Tem sido também reconhecido que um melhor conhecimento do agente patogênico e dos mecanismos de defesa das plantas permitirá o desenvolvimento de novas abordagens no sentido de aumentar a durabilidade da resistência. Após uma breve descrição de conceitos na área da resistência das plantas às doenças, nesta revisão tentou-se dar uma idéia do progresso na investigação da ferrugem alaranjada do cafeeiro e do CBD relativamente ao processo de infecção e variabilidade dos agentes patogênicos, melhoramento do cafeeiro para a resistência e mecanismos de resistência do cafeeiro

    Turning the Table: Plants Consume Microbes as a Source of Nutrients

    Get PDF
    Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles

    RNA-seq analysis in plant–fungus interactions

    Get PDF
    Many fungi are pathogens that infect important food and plantation crops, reducing both yield and quality of food products. Understanding plant–fungus interactions is crucial as knowledge in this area is required to formulate sustainable strategies to improve plant health and crop productivity. High-throughput RNA-sequencing (RNA-seq) enables researchers to gain insights of the mixed and multispecies transcriptomes in plant–fungus interactions. Interpretation of huge data generated by RNA-seq has led to new insights in this area, facilitating a system approach in unraveling interactions between plant hosts and fungal pathogens. In this review, the application and challenges of RNA-seq analysis in plant–fungus interactions will be discussed

    Impact of genomics on fungal biology

    No full text
    Fungi represent an extremely diverse and complex class of organisms, and their categorization as lower eukaryotes should by no means be mistaken as meaning low-end. At present, fungi serve as model systems for various aspects of molecular and cellular biology, for example cell cycle regulation, intracellular signaling, metabolic pathway analysis and transcriptional regulation (Feldbrügge et al., 2004; Jiang, 2006; Oliver, 2006). They are also increasingly used on an industrial scale in the production of chemical compounds or in bioremediation (Grimm et al., 2005; Tortella et al., 2005). Some of the most recent and exciting advances within the field of fungal biology have been linked with genomic studies. To explore these, the IXth International Fungal Biology Conference & 16th New Phytologist Symposium entitled Impact of Genomics in Fungal Biology was held in Nancy, France (http://www.newphytologist. org/fungal-genomics/default.htm). The meeting brought together nearly 100 scientists, from all areas of fungal research, and highlighted a wide range of impacts that genome sequencing has and will have on our understanding of fungal biology

    Rust haustoria : nutrient uptake and beyond

    No full text
    Haustoria are morphological features of an extremely successful class of plant parasites, the obligate biotrophs. The broad phylogenetic spectrum of organisms producing haustoria suggests that these structures have arisen many times in the course of evolution and represent specific adaptations of these organisms to the close interaction with their respective host plants. This close interaction and the fact that these structures cannot be produced in vitro have hampered an analysis of the roles of haustoria in biotrophy for many decades. Only recently has it become possible to analyse haustorial function at a molecular level. A picture is beginning to emerge indicating that haustoria do not only serve in nutrient uptake a task postulated for these elements ever since their discovery. Moreover, they seem to perform enormous biosynthetic duties. They also seem to be engaged in the suppression of host defense responses and in redirecting or reprogramming the host s metabolic flow. This review intends to summarize current knowledge about the structure and function especially of rust haustoria

    Immunolocalization of Pathogen Effectors

    Full text link

    Nutrient uptake in rust fungi: how sweet is parasitic life?

    Full text link
    corecore