1,919 research outputs found

    Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    Get PDF
    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included

    Chagas disease reactivation in a heart transplant patient infected by domestic Trypanosoma cruzi discrete typing unit I (TcIDOM)

    Get PDF
    Background Trypanosoma cruzi, causative agent of Chagas disease, displays high intraspecific genetic diversity: six genetic lineages or discrete typing units (DTUs) are currently recognized, termed TcI through TcVI. Each DTU presents a particular distribution pattern across the Americas, and is loosely associated with different transmission cycles and hosts. Several DTUs are known to circulate in Central America. It has been previously suggested that TcI infection is benign and does not lead to chronic chagasic cardiomyopathy (CCC). Findings In this study, we genotyped T. cruzi parasites circulating in the blood and from explanted cardiac tissue of an El Salvadorian patient who developed reactivation Chagas disease while on immunosuppressive medications after undergoing heart transplant in the U.S. as treatment for end-stage CCC. Parasite typing was performed through molecular methods (restriction fragment length polymorphism of polymerase reaction chain amplified products, microsatellite typing, maxicircle sequence typing and low-stringency single primer PCR, [LSSP-PCR]) as well as lineage-specific serology. We show that the parasites infecting the patient belong to the TcI DTU exclusively. Our data indicate that the parasites isolated from the patient belong to a genotype frequently associated with human infection throughout the Americas (TcI DOM ). Conclusions Our results constitute compelling evidence in support of TcI DTU’s ability to cause end-stage CCC and help dispel any residual bias that infection with this lineage is benign, pointing to the need for increased surveillance for dissemination of this genotype in endemic regions, the USA and globally

    Organic Analysis in Miller Range 090657 and Buckley Island 10933 CR2 Chondrites: Part 1 In-Situ Observation of Carbonaceous Material

    Get PDF
    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases

    Coordinated Analyses of Mineral-organic Matter Associations in Interplanetary Dust Particles

    Get PDF
    Little is known about the timing and processes involved in the incorporation of organic matter with inorganic materials in early Solar System bodies. Recently, X-ray absorption near-edge spectroscopy (XANES) studies showed carbon-rich rims surrounding individual mineral grains in anhydrous IDPs [1,2]. These carbonaceous rims are believed to have formed prior to parent body formation and likely served to bond mineral grains during accretion into larger aggregates. We are exploring the nature of these carbonaceous rims through coordinated analyses of their chemistry, mineralogy, spectroscopy and isotopic characteristics. Here we report our preliminary mineralogical observations

    Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 3 C and N Isotopic Imaging

    Get PDF
    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble nanoglobules of macro-molecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Large H, C and N isotopic anomalies suggest some organic components formed in low-T interstellar or outer Solar System environments. The highest isotope anomalies occur in m-scale inclusions in the most primitive materials, such as cometary dust and the least altered carbonaceous chondrites. Often, the hosts of these isotopically anomalous 'hotspots' are discrete organic nanoglobules that probably formed in the outermost reaches of the protosolar disk or cold molecular cloud. Molecular and isotopic studies of meteoritic organic matter are aimed at identifying the chemical properties and formation processes of interstellar organic materials and the subsequent chemical evolutionary pathways in various Solar System environments. The combination of soluble and insoluble analyses with in situ and bulk studies provides powerful constraints on the origin and evolution of organic matter in the Solar System. Using macroscale extraction and analysis techniques as well as microscale in situ observations we have been studying both insoluble and soluble organic material in primitive astromaterial samples. Here, we present results of bulk C and N isotopic measurements and coordinated in situ C and N isotopic imaging and mineralogical and textural studies of carbonaceous materials in a Cr2 carbonaceous chondrite. In accompanying abstracts we discuss the morphology and distribution of carbonaceous components and soluble organic species of this meteorite

    Changes in synergy of transtibial amputee during gait: A pilot study

    No full text
    The number of lower limb amputations is increasing significantly in developed countries. The knowledge of muscle synergy in subjects with loss of muscles could help to understand the general neural strategy underlying muscle coordination in walking. The aim of this study was to investigate the differences in healthy subject's dominant leg, amputee's intact leg (IL) and the amputee's prosthetic leg (PL) muscles using synergy analysis. Concatenated non-negative matrix factorization (CNMF) was performed to divide the surface electromyography (sEMG) data obtained from 6 upper knee and 4 shank muscles into muscle synergy (S) and activation coefficient profile (C) during walking. The difference in S showed low to high correlations inter-subjectively. The high correlation suggests that the central nervous system (CNS) activates the same groups of muscles synergistically. Amputee's muscle alterations due to inadequate proprioceptive feedback, weight bearing deficiency in PL and prosthesis type could lead to a low correlation in S between groups. The C showed to be statistically significantly different in some regions of the gait cycle (GC). These findings could provide valuable information for rehabilitation purposes and development of a synergy-based controller from sEMG for future generations of prostheses

    Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 2 Amino Acid Analyses

    Get PDF
    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble, unstructured kerogen-like components, as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding of spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Using macroscale extraction and analysis techniques in combination with in situ microscale observation, we have been studying both insoluble and soluble organic material in the primitive CR2 chondrite Miller Range (MIL) 090657. In accompanying abstracts (Cao et al. and Messenger et al.) we discuss insoluble organic material in the samples. By performing the consortium studies, we aim to improve our understanding of the relationship between the meteorite minerals and the soluble and insoluble organic phases and to delineate which species formed within the meteorite and those that formed in nebular or presolar environments. In this abstract, we present the results of amino acid analyses of MIL 090657 by ultra performance liquid chromatography with fluorescence detection and quadrupole-time of flight mass spectrometry. Amino acids are of interest because they are essential to life on Earth, and because they are present in sufficient structural, enantiomeric and isotopic diversity to allow insights into early solar system chemical processes. Furthermore, these are among the most isotopically anomalous species, yet at least some fraction are thought to have formed by aqueously-mediated processes during parent body alteration

    Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors

    Get PDF
    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO (4×10244 \times 10^{-24} Hz1/2^{-1/2}). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8×10266.8 \times 10^{-26} strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2×10251.2 \times 10^{-25} (25 Hz) to 2.2×10262.2 \times 10^{-26} (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.Comment: 33 pages, 11 figure

    A hierarchical search for gravitational waves from supermassive black hole binary mergers

    Full text link
    We present a method to search for gravitational waves from coalescing supermassive binary black holes in LISA data. The search utilizes the F\mathcal{F}-statistic to maximize over, and determine the values of, the extrinsic parameters of the binary system. The intrinsic parameters are searched over hierarchically using stochastically generated multi-dimensional template banks to recover the masses and sky locations of the binary. We present the results of this method applied to the mock LISA data Challenge 1B data set.Comment: 11 pages, 2 figures, for GWDAW-12 proceedings edition of CQ
    corecore