689 research outputs found

    Cosmic Needles versus Cosmic Microwave Background Radiation

    Get PDF
    It has been suggested by a number of authors that the 2.7K cosmic microwave background (CMB) radiation might have arisen from the radiation from Population III objects thermalized by conducting cosmic graphite/iron needle-shaped dust. Due to lack of an accurate solution to the absorption properties of exceedingly elongated grains, in existing literature which studies the CMB thermalizing process they are generally modelled as (1) needle-like spheroids in terms of the Rayleigh approximation; (2) infinite cylinders; and (3) the antenna theory. We show here that the Rayleigh approximation is not valid since the Rayleigh criterion is not satisfied for highly conducting needles. We also show that the available intergalactic iron dust, if modelled as infinite cylinders, is not sufficient to supply the required opacity at long wavelengths to obtain the observed isotropy and Planckian nature of the CMB. If appealing to the antenna theory, conducting iron needles with exceedingly large elongations (10^4) appear able to provide sufficient opacity to thermalize the CMB within the iron density limit. But the applicability of the antenna theory to exceedingly thin needles of nanometer/micrometer in thickness needs to be justified.Comment: 13 pages, 4 figures; submitted to ApJ

    High temperature mobility of CdTe

    Get PDF
    The Hall mobility of electrons μH is measured in CdTe in the temperature interval 450-1050°C and defined Cd overpressure in near-intrinsic conditions. The strong decrease of μH above 600°C is reported. The effect is explained within a model of multivalley conduction where both electrons in �1c minimum and in L1c minima participate. The theoretical description is based on the solution of the Boltzmann transport equation within the relaxation time approximation including the polar and acoustic phonon intravalley and intervalley scatterings. The �1c to L1c separation �E=0.29 - 10-4T (eV) for the effective mass in the L valley mL=0.35m0 is found to best fit the experimental data. Such �E is about four times smaller than it is predicted by first-principle calculations. © 2001 American Institute of Physics

    Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure

    Get PDF
    Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure

    Technical Order Library in Orbit

    Get PDF
    This paper is a follow-on technical analysis of M The Technical Order Library in Orbit 11,! a paper written by Mr. Rene M. Winz, Titan I Technical Writing Chief, and presented to our Denver Division and corporate management last summer. In his paper, Mr. Winz proposed three alternate methods of providing technical order support to a manned orbital space station. These were: ground station-to-space station, orbiting data station, and on-board technical orders (in microform). His conclusion recommended the ground station-to-space station approach. Mr. Moravec and I have elected to expand on all three of the philosophies and present possible methods of accomplishing; data storage, transmission, receipt, and display; not only for manned orbital space stations, but also for manned space vehicles

    Magnetic Nanoparticles in the Interstellar Medium: Emission Spectrum and Polarization

    Full text link
    The presence of ferromagnetic or ferrimagnetic nanoparticles in the interstellar medium would give rise to magnetic dipole radiation at microwave and submm frequencies. Such grains may account for the strong mm-wavelength emission observed from a number of low-metallicity galaxies, including the Small Magellanic Cloud. We show how to calculate the absorption and scattering cross sections for such grains, with particular attention to metallic Fe, magnetite Fe3O4, and maghemite gamma-Fe2O3, all potentially present in the interstellar medium. The rate of Davis-Greenstein alignment by magnetic dissipation is also estimated. We determine the temperature of free-flying magnetic grains heated by starlight and we calculate the polarization of the magnetic dipole emission from both free-fliers and inclusions. For inclusions, the magnetic dipole emission is expected to be polarized orthogonally relative to the normal electric dipole radiation. Finally, we present self-consistent dielectric functions for metallic Fe, magnetite Fe3O4, and maghemite gamma-Fe2O3, enabling calculation of absorption and scattering cross sections from microwave to X-ray wavelengths.Comment: submitted to Ap.J. Fig. 10 has been corrected. Minor changes to the discussion in section 10.2.

    Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex

    Get PDF
    <div><p>Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans), can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (<em>Platycercus elegans</em>) parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a <em>ca</em> 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position). The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow between populations, and therefore may promote speciation, even in the absence of other barriers.</p> </div

    The Mathematical Universe

    Full text link
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Godel incompleteness. I hypothesize that only computable and decidable (in Godel's sense) structures exist, which alleviates the cosmological measure problem and help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs; more details at http://space.mit.edu/home/tegmark/toe.htm

    A scoping review of the implications of adult obesity in the delivery and acceptance of dental care.

    Get PDF
    Background Due to the increasing prevalence of obesity within the general population it is presumed that the prevalence of overweight and obese adults accessing dental services will also increase. For this reason dentists need to be aware of implications of managing such patients.Methods A scoping review was carried out. Both Medline via OVID and Scopus databases were searched along with grey literature databases and the websites of key organizations. Inclusion and exclusion criteria were established. The data were collected on a purpose-made data collection form and analysed descriptively.Results The review identified 28 relevant published articles and two relevant items of grey literature. Following review of this literature three themes relating to adult obesity in the delivery and acceptance of dental care emerged; clinical, service delivery and patient implications. The majority of the papers focused on the clinical implications.Conclusion On the topic of adult obesity and dental care, the majority of published and grey literature focuses on the clinical implications. Further research is needed on both the patients' perspectives of being overweight or obese and the delivery and acceptance of dental care and the service delivery implications

    Drive axis controller optimization of production machines based on dynamic models

    Get PDF
    The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The first part presents the identification of a dynamic model of the axis based on experimental data from measuring the axis dynamics. The second part describes the controller model, selection of optimization objective functions, and optimization of constraint conditions. The optimization of controllers is tuned by simulation using identified state-space model. Subsequently, the optimization procedure is implemented on the identified model, and the found control parameters are used on a real machine tool linear axis with different loads. The implementation of the proposed complex procedure on a real horizontal machine tool proved the advantage of simultaneous tuning of all parameters using optimization methods. The strategy solves the problem of mutual interaction of all control law parameters disabling effective usability of gradual sequential tuning. The methodology was developed on a speed control loop, the tuning of which is usually the most difficult due to the close interaction with the dynamic properties of the machine mechanics. The whole procedure is also applicable to the position and current control loop
    corecore