516 research outputs found
Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV using Temperature and Pressure Acceleration
Composite Overwrapped Pressure Vessel (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Sometimes lifetime testing is performed on an actual COPV in service in an effort to validate the reliability model that is the basis for certifying the continued flight worthiness of its sisters. Currently, testing of such a Kevlar49(registered TradeMark)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the data base and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one nine , that is, reducing the probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several would be necessary
The Birmingham Boron Neutron Capture Therapy (BNCT) project : developments towards selective internal particle therapy
This paper will review progress on two aspects of the Birmingham BNCT project. Firstly on evaluation of the effects of high and low LET radiations when delivered simultaneously, and secondly on attempts to optimise delivery of the boron carrier compound BPA through pharmacokinetic studies. Simultaneous or non-simultaneous irradiations of V79 cells with alpha-particle and X-ray irradiations were performed. Alpha doses of 2 and 2.5 Gy were chosen and the impact on survival when delivered separately or simultaneously with variable doses of X-rays was evaluated. The pharmacokinetics of the delivery of a new formulation of BPA (BPA-mannitol) are being investigated in brain tumour patients through a study with 2 × 2 design featuring intravenous and intracarotid artery infusion of BPA, with or without a mannitol bolus. On the combined effect of low and high LET radiations, a synergistic effect was observed when alpha and X-ray doses are delivered simultaneously. The effect is only present at the 2.5 Gy alpha dose and is a very substantial effect on both the shape of the survival curve and the level of cell killing. This indicates that the alpha component may have the effect of inhibiting the repair of damage from the low LET radiation dose delivered simultaneously. On the pharmacokinetics of BPA, data on the first three cohorts indicate that bioavailability of BPA in brain ECF is increased substantially through the addition of a mannitol bolus, as well as by the use of intracarotid artery route of infusion. In both cases, for some patients the levels after infusion approach those seen in blood, whereas the ECF levels for intravenous infusion without mannitol are typically less than 10% of the blood values
‘It stays with you’: multiple evocative representations of dance and future possibilities for studies in sport and physical cultures
This article considers the integration of arts-based representations via poetic narratives together with artistic representation on dancing embodiment so as to continue an engagement with debates regarding multiple forms/representations. Like poetry, visual images are unique and can evoke particular kinds of emotional and visceral responses, meaning that alternative representational forms can resonate in different and powerful ways. In the article, we draw on grandparent-grandchild interactions, narrative poetry, and artistic representations of dance in order to illustrate how arts-based methods might synergise to offer new ways of ‘knowing’ and ‘seeing’. The expansion of the visual arts into interdisciplinary methodological innovations is a relatively new, and sometimes contentious approach, in studies of sport and exercise. We raise concerns regarding the future for more arts-based research in the light of an ever-changing landscape of a neoliberal university culture that demands high productivity in reductionist terms of what counts as ‘output’, often within very restricted time-frames. Heeding feminist calls for ‘slow academies’ that attempt to ‘change’ time collectively, and challenge the demands of a fast-paced audit culture, we consider why it is worth enabling creative and arts-based methods to continue to develop and flourish in studies of sport, exercise and health, despite the mounting pressures to ‘perform’
Deterministic secure direct communication using GHZ states and swapping quantum entanglement
We present a deterministic secure direct communication scheme via
entanglement swapping, where a set of ordered maximally entangled
three-particle states (GHZ states), initially shared by three spatially
separated parties, Alice, Bob and Charlie, functions as a quantum information
channel. After ensuring the safety of the quantum channel, Alice and Bob apply
a series local operations on their respective particles according to the
tripartite stipulation and the secret message they both want to send to
Charlie. By three Alice, Bob and Charlie's Bell measurement results, Charlie is
able to infer the secret messages directly. The secret messages are faithfully
transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ
states without revealing any information to a potential eavesdropper. Since
there is not a transmission of the qubits carrying the secret message between
any two of them in the public channel, it is completely secure for direct
secret communication if perfect quantum channel is used.Comment: 9 pages, no figur
An assessment of the strength of knots and splices used as eye terminations in a sailing environment
Research into knots, splices and other methods of forming an eye termination has been limited, despite the fact that they are essential and strongly affect the performance of a rope. The aim of this study was to carry out a comprehensive initial assessment of the breaking strength of eye terminations commonly used in a sailing environment, thereby providing direction for further work in the field. Supports for use in a regular tensile testing machine were specially developed to allow individual testing of each sample and a realistic spread of statistical data to be obtained. Over 180 break tests were carried out on four knots (the bowline, double bowline, figure-of-eight loop and perfection loop) and two splices (three-strand eye splice and braid-on-braid splice). The factors affecting their strength were investigated. A statistical approach to the analysis of the results was adopted. The type of knot was found to have a significant effect on the strength. This same effect was seen in both types of rope construction (three-strand and braid-on-braid). Conclusions were also drawn as to the effect of splice length, eye size, manufacturer and rope diameter on the breaking strength of splices. Areas of development and further investigation were identified
Security against individual attacks for realistic quantum key distribution
I prove the security of quantum key distribution against individual attacks
for realistic signals sources, including weak coherent pulses and
downconversion sources. The proof applies to the BB84 protocol with the
standard detection scheme (no strong reference pulse). I obtain a formula for
the secure bit rate per time slot of an experimental setup which can be used to
optimize the performance of existing schemes for the considered scenario.Comment: 10 pages, 4 figure
Recommended from our members
Mothers behaving badly: chaotic hedonism and the crisis of neoliberal social reproduction
This article focuses on the significance of the plethora of representations of mothers ‘behaving badly’ in contemporary anglophone media texts, including the films Bad Moms, Fun Mom Dinner and Bad Mom’s Christmas, the book and online cartoons Hurrah for Gin and the recent TV comedy dramas Motherland, The Let Down and Catastrophe. All these media texts include representations of, first, mothers in the midst of highly chaotic everyday spaces where any smooth routine of domesticity is conspicuous by its absence; and second, mothers behaving hedonistically, usually through drinking and partying, behaviour that is more conventionally associated with men or women without children. After identifying the social type of the mother behaving badly (MBB), the article locates and analyses it in relation to several different social and cultural contexts. These contexts are: a neoliberal crisis in social reproduction marked by inequality and overwork; the continual if contested role of women as ‘foundation parents’; and the negotiation of longer-term discourses of female hedonism. The title gestures towards a popular British sitcom of the 1990s, Men Behaving Badly, which popularized the idea of the ‘new lad’; and this article suggests that the new lad’s counterpart, the ladette, is mutating into the mother behaving badly, or the ‘lad mom’. Asking what work this figure does now, in a later neoliberal context, it argues that the mother behaving badly is simultaneously indicative of a widening and liberating range of maternal subject positions and symptomatic of a profound contemporary crisis in social reproduction. By focusing on the classed and racialised dynamics of the MBB – by examining who exactly is permitted to be hedonistic, and how – and by considering the MBB’s limited and partial imagining of progressive social change, the article concludes by emphasizing the urgency of creating more connections between such discourses and ‘parents behaving politically’
Quantum Cryptography with Coherent States
The safety of a quantum key distribution system relies on the fact that any
eavesdropping attempt on the quantum channel creates errors in the
transmission. For a given error rate, the amount of information that may have
leaked to the eavesdropper depends on both the particular system and the
eavesdropping strategy. In this work, we discuss quantum cryptographic
protocols based on the transmission of weak coherent states and present a new
system, based on a symbiosis of two existing ones, and for which the
information available to the eavesdropper is significantly reduced. This system
is therefore safer than the two previous ones. We also suggest a possible
experimental implementation.Comment: 20 pp. Revtex, Figures available from the authors upon request, To be
published in PRA (March 95
Prediction of peptide and protein propensity for amyloid formation
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
Quantum entanglement and disentanglement of multi-atom systems
We present a review of recent research on quantum entanglement, with special
emphasis on entanglement between single atoms, processing of an encoded
entanglement and its temporary evolution. Analysis based on the density matrix
formalism are described. We give a simple description of the entangling
procedure and explore the role of the environment in creation of entanglement
and in disentanglement of atomic systems. A particular process we will focus on
is spontaneous emission, usually recognized as an irreversible loss of
information and entanglement encoded in the internal states of the system. We
illustrate some certain circumstances where this irreversible process can in
fact induce entanglement between separated systems. We also show how
spontaneous emission reveals a competition between the Bell states of a two
qubit system that leads to the recently discovered "sudden" features in the
temporal evolution of entanglement. An another problem illustrated in details
is a deterministic preparation of atoms and atomic ensembles in long-lived
stationary squeezed states and entangled cluster states. We then determine how
to trigger the evolution of the stable entanglement and also address the issue
of a steered evolution of entanglement between desired pairs of qubits that can
be achieved simply by varying the parameters of a given system.Comment: Review articl
- …
