185 research outputs found
Contact resistivity and current flow path at metal/graphene contact
The contact properties between metal and graphene were examined. The
electrical measurement on a multiprobe device with different contact areas
revealed that the current flow preferentially entered graphene at the edge of
the contact metal. The analysis using the cross-bridge Kelvin structure (CBK)
suggested that a transition from the edge conduction to area conduction
occurred for a contact length shorter than the transfer length of ~1 micron.
The contact resistivity for Ni was measured as ~5*10-6 Ohmcm2 using the CBK. A
simple calculation suggests that a contact resistivity less than 10-9 Ohmcm2 is
required for miniaturized graphene field effect transistors
Estimation of residual carrier density near the Dirac point in graphene through quantum capacitance measurement
We discuss the residual carrier density (n*) near the Dirac point (DP) in
graphene estimated by quantum capacitance (CQ) and conductivity measurements.
The CQ at the DP has a finite value and is independent of the temperature. A
similar behavior is also observed for the conductivity at the DP, because their
origin is residual carriers induced externally by charged impurities. The n*
extracted from CQ, however, is often smaller than that from the conductivity,
suggesting that the mobility in the puddle region is lower than that in the
linear region. The CQ measurement should be employed for estimating n*
quantitatively.Comment: APL 201
Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: an Insight into Current Flow across Schottky Barriers
In this article, we study the properties of metal contacts to single-layer
molybdenum disulfide (MoS2) crystals, revealing the nature of switching
mechanism in MoS2 transistors. On investigating transistor behavior as contact
length changes, we find that the contact resistivity for metal/MoS2 junctions
is defined by contact area instead of contact width. The minimum gate dependent
transfer length is ~0.63 {\mu}m in the on-state for metal (Ti) contacted
single-layer MoS2. These results reveal that MoS2 transistors are Schottky
barrier transistors, where the on/off states are switched by the tuning the
Schottky barriers at contacts. The effective barrier heights for source and
drain barriers are primarily controlled by gate and drain biases, respectively.
We discuss the drain induced barrier narrowing effect for short channel
devices, which may reduce the influence of large contact resistance for MoS2
Schottky barrier transistors at the channel length scaling limit.Comment: ACS Nano, ASAP (2013
Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator
Graphene opens up for novel optoelectronic applications thanks to its high
carrier mobility, ultra-large absorption bandwidth, and extremely fast material
response. In particular, the opportunity to control optoelectronic properties
through tuning of Fermi level enables electro-optical modulation,
optical-optical switching, and other optoelectronics applications. However,
achieving a high modulation depth remains a challenge because of the modest
graphene-light interaction in the graphene-silicon devices, typically,
utilizing only a monolayer or few layers of graphene. Here, we comprehensively
study the interaction between graphene and a microring resonator, and its
influence on the optical modulation depth. We demonstrate graphene-silicon
microring devices showing a high modulation depth of 12.5 dB with a relatively
low bias voltage of 8.8 V. On-off electro-optical switching with an extinction
ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with
a 4 V peak-to-peak voltage.Comment: 12 pages, including 7 figure
- …
