23 research outputs found
A multi-dimensional view of transport-related social exclusion: A comparative study of Greater Perth and Sydney
Transport-related social exclusion is a complex issue. It can be studied from a variety of angles, be influenced by a number of factors, and affect diverse population groups. This study investigates transport-related social exclusion from a multi-dimensional view. Transport inequity was measured based on different development stages of a region using the Lorenz Curve and Gini index, and compared socio-economic characteristics, such as housing affordability, employment self-sufficiency, urban sprawl, and transport-mode share at different degrees of spatial aggregation. Two hierarchical spatial aggregation levels are used: (1) Sydney – Perth; (2) Inner – Middle – Outer sectors. Spatial gaps of transport-related social exclusion are identified for both cities and a number of policy implications are considered to provide suggestions to improve transport-related social inclusion in both cities
What Point-of-Use Water Treatment Products Do Consumers Use? Evidence from a Randomized Controlled Trial among the Urban Poor in Bangladesh
BACKGROUND: There is evidence that household point-of-use (POU) water treatment products can reduce the enormous burden of water-borne illness. Nevertheless, adoption among the global poor is very low, and little evidence exists on why. METHODS: We gave 600 households in poor communities in Dhaka, Bangladesh randomly-ordered two-month free trials of four water treatment products: dilute liquid chlorine (sodium hypochlorite solution, marketed locally as Water Guard), sodium dichloroisocyanurate tablets (branded as Aquatabs), a combined flocculant-disinfectant powdered mixture (the PUR Purifier of Water), and a silver-coated ceramic siphon filter. Consumers also received education on the dangers of untreated drinking water. We measured which products consumers used with self-reports, observation (for the filter), and chlorine tests (for the other products). We also measured drinking water's contamination with E. coli (compared to 200 control households). FINDINGS: Households reported highest usage of the filter, although no product had even 30% usage. E. coli concentrations in stored drinking water were generally lowest when households had Water Guard. Households that self-reported product usage had large reductions in E. coli concentrations with any product as compared to controls. CONCLUSION: Traditional arguments for the low adoption of POU products focus on affordability, consumers' lack of information about germs and the dangers of unsafe water, and specific products not meshing with a household's preferences. In this study we provided free trials, repeated informational messages explaining the dangers of untreated water, and a variety of product designs. The low usage of all products despite such efforts makes clear that important barriers exist beyond cost, information, and variation among these four product designs. Without a better understanding of the choices and aspirations of the target end-users, household-based water treatment is unlikely to reduce morbidity and mortality substantially in urban Bangladesh and similar populations
Synthesizing qualitative and quantitative evidence on non-financial access barriers: implications for assessment at the district level
An exploration of mortality risk factors in non-severe pneumonia in children using clinical data from Kenya
Erratum: Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii (Scientific Reports (2016) 6 (24278) DOI: 10.1038/srep24278)
Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii
Cold environments dominate the Earth's biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0-4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (-2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation
Diverse Sensory Repertoire of Paralogous Chemoreceptors Tlp2, Tlp3, and Tlp4 in Campylobacter jejuni
Campylobacter jejuni responds to extracellular stimuli via transducer-like chemoreceptors (Tlps). Here, we describe receptor-ligand interactions of a unique paralogue family of dCache_1 (double Calcium channels and chemotaxis) chemoreceptors: Tlp2, Tlp3, and Tlp4. Phylogenetic analysis revealed that Tlp2, Tlp3, and Tlp4 receptors may have arisen through domain duplications, followed by a divergent evolutionary drift, with Tlp3 emerging more recently, and unexpectedly, responded to glycans, as well as multiple organic and amino acids with overlapping specificities. All three Tlps interacted with five monosaccharides and complex glycans, including Lewis's antigens, P antigens, and fucosyl GM1 ganglioside, indicating a potential role in host-pathogen interactions. Analysis of chemotactic motility of single, double, and triple mutants indicated that these chemoreceptors are likely to work together to balance responses to attractants and repellents to modulate chemotaxis in C. jejuni. Molecular docking experiments, in combination with saturation transfer difference nuclear magnetic resonance spectroscopy and competition surface plasmon resonance analysis, illustrated that the ligand-binding domain of Tlp3 possess one major binding pocket with two overlapping, but distinct binding sites able to interact with multiple ligands. A diverse sensory repertoire could provide C. jejuni with the ability to modulate responses to attractant and repellent signals and allow for adaptation in host-pathogen interactions. IMPORTANCE Campylobacter jejuni responds to extracellular stimuli via transducer-like chemoreceptors (Tlps). This remarkable sensory perception mechanism allows bacteria to sense environmental changes and avoid unfavorable conditions or to maneuver toward nutrient sources and host cells. Here, we describe receptor-ligand interactions of a unique paralogue family of chemoreceptors, Tlp2, Tlp3, and Tlp4, that may have arisen through domain duplications, followed by a divergent evolutionary drift, with Tlp3 emerging more recently. Unlike previous reports of ligands interacting with sensory proteins, Tlp2, Tlp3, and Tlp4 responded to many types of chemical compounds, including simple and complex sugars such as those present on human blood group antigens and gangliosides, indicating a potential role in host-pathogen interactions. Diverse sensory repertoire could provide C. jejuni with the ability to modulate responses to attractant and repellent signals and allow for adaptation in host-pathogen interactions.Full Tex
Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii
TRAM domain proteins present in Archaea and Bacteria have a \u3b2-barrel shape with anti-parallel \u3b2-sheets that form a nucleic acid binding surface; a structure also present in cold shock proteins (Csps). Aside from protein structures, experimental data defining the function of TRAM domains is lacking. Here, we explore the possible functional properties of a single TRAM domain protein, Ctr3 (cold-responsive TRAM domain protein 3) from the Antarctic archaeon Methanococcoides burtonii that has increased abundance during low temperature growth. Ribonucleic acid (RNA) bound by Ctr3 in vitro was determined using RNA-seq. Ctr3-bound M. burtonii RNA with a preference for transfer (t)RNA and 5S ribosomal RNA, and a potential binding motif was identified. In tRNA, the motif represented the C loop; a region that is conserved in tRNA from all domains of life and appears to be solvent exposed, potentially providing access for Ctr3 to bind. Ctr3 and Csps are structurally similar and are both inferred to function in low temperature translation. The broad representation of single TRAM domain proteins within Archaea compared with their apparent absence in Bacteria, and scarcity of Csps in Archaea but prevalence in Bacteria, suggests they represent distinct evolutionary lineages of functionally equivalent RNA-binding proteins
A diverse community of jute (Corchorus spp.) endophytes reveals mutualistic host–microbe interactions
Endophytes are plant-associated microbes that live within plants as an integral part of the host metabolism and function. This study aimed to identify the molecular and physiological characteristics of both culturable and non-culturable endophytic bacteria and fungi present in different parts of the jute (Corchorus olitorius) plant. Using universal primers used to amplify hypervariable bacterial 16S rDNA and fungal internal transcribed spacer (ITS) regions of 18S rDNA, we identified five different culturable and 20 non-culturable endophytic bacteria as well as 14 different fungal endophytes from various parts of jute. Biochemical and physiological tests suggest that these microbes may bring a wide range of benefits to their hosts. For example, all five culturable endophytic bacteria were positive for auxin and catalase activity, which may lead to improved root elongation and stress resistance, respectively. These bacteria also have metal uptake, haemolytic and hydrolytic activities that could be useful in medical, environmental and industrial applications. The fungal endophytes were positive for lignin peroxidase, cellulase and xylanase activities, all of which may influence jute physiology. Another important finding was the antifungal activity of one of the fungi against a devastating pernicious fungus that affects hundreds of plant species.Rifat Ara Najnin, Farhana Shafrin, Ahsan Habib Polash, Aubhishek Zaman, Amzad Hossain ... Jannatul Ferdoush Tuli ... et al
