98 research outputs found
Impact of congenital calcitonin deficiency due to dysgenetic hypothyroidism on bone mineral density
Protein-RNA interactions in the regulation of PTH gene expression by calcium and phosphate
The kidney sodium-calcium exchanger
Contains fulltext :
23165___.PDF (publisher's version ) (Open Access
Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat.
In vivo in the rat 1,25(OH)2D3 decreases and a low calcium increases PTH mRNA levels. We now report the effect of 3 and 8 wk of changes in dietary vitamin D and calcium on PTH mRNA levels. PTH mRNA levels were increased by 3 wk of calcium deficiency (five times), a vitamin D-deficient diet (two times), and combined deficiency (10 times), but not changed by high calcium. Vitamin D-deficient-diet rats' PTH mRNA did not decrease after a single large dose of 1,25(OH)2D3, but did decrease partially after repeated daily doses of 1,25(OH)2D3. Rats after a vitamin D-, calcium-deficient (-D-Ca) diet did not respond to changes in serum calcium at 1 h. Flow cytometry of isolated cells from parathyroid-thyroid tissue separated the smaller parathyroid from the larger thyroid cells and allowed an analysis of parathyroid cell number. In normal vitamin D/normal calcium (NDNCa) rats the parathyroid cells were 24.7 +/- 3.4% (n = 6) of the total cell number, whereas in -D-Ca rats they were 41.8 +/- 6.6% (n = 6) (P less than 0.05). That is, -D-Ca rats had 1.7 times the number of cells, whereas they had 10 times the amount of PTH mRNA, indicating the major contribution (6 times) of increased PTH gene expression per cell. Moreover, a calcium-deficient, more so than a vitamin D-deficient diet, amplifies the expression of the PTH gene, and vitamin D is necessary for an intact response of PTH mRNA to 1,25(OH)2D3 or calcium
Effects of calcitriol, 22-oxacalcitriol, and calcipotriol on serum calcium and parathyroid hormone gene expression.
Regulation of calcitonin gene transcription by vitamin D metabolites in vivo in the rat.
Calcitonin is secreted by the C cells of the thyroid in response to a raised serum calcium, and acts on bone to lower serum calcium. The C cells have specific receptors for the dihydroxymetabolite of vitamin D3, 1,25(OH)2D3. Moreover, calcitonin stimulates the synthesis of 1,25(OH)2D3 in the kidney. Parathyroid hormone (PTH), the third calciotrophic hormone, is also trophic to the renal synthesis of 1,25(OH)2D3, and in turn 1,25(OH)2D3 inhibits PTH gene transcription and synthesis. We report here the marked inhibition of calcitonin gene transcription by the injection of physiologically relevant doses of 1,25(OH)2D3 to normal rats that did not raise serum calcium. Calcitonin mRNA levels after 100 pmol 1,25(OH)2D3 decreased to 6% of basal at 6 h and 4% at 48 h, and a dose response showed a marked effect even after 12.5 pmol 1,25(OH)2D3, with no appreciably greater effect with larger doses (up to 200 pmol). Control genes, actin, thyroglobulin (thyroid follicular cells), somatostatin (thyroid C-cells) were not affected by 1,25(OH)2D3. Gel blots showed that 1,25(OH)2D3 decreased calcitonin mRNA levels without any change in its size. In vitro nuclear transcription showed that 1,25(OH)2D3-treated (100 pmol) rats' calcitonin transcription was 10% of control, while thyroglobulin and actin were 100%. We propose that calcium is the major regulator of PTH and calcitonin secretion, while 1,25(OH)2D3 is an important regulator of PTH and calcitonin gene transcription. We believe this to be the first demonstration of an effect of 1,25(OH)2D3 on the C cells thereby establishing a new target organ and site of action of vitamin D. Calcitonin is trophic to 1,25(OH)2D3 synthesis, which in turn inhibits calcitonin synthesis, which are the components of a new endocrinological feedback loop
Oestrogen deficiency--does it have a role in the genesis of skeletal problems in dialysed women?
- …
