1,568 research outputs found

    Constraining the Inflationary Equation of State

    Full text link
    We explore possible constraints on the inflationary equation state: p=w\rho. While w must be close to -1 for those modes that contribute to the observed power spectrum, for those modes currently out of experimental reach, the constraints on w are much weaker, with only w<-1/3 as an a priori requirement. We find, however, that limits on the reheat temperature and the inflationary energy scale constrain w further, though there is still ample parameter space for a vastly different (accelerating) equation of state between the end of quasi-de Sitter inflation and the beginning of the radiation-dominated era. In the event that such an epoch of acceleration could be observed, we review the consequences for the primordial power spectrum.Comment: 12 pages, 2 figur

    Effect of defects on thermal denaturation of DNA Oligomers

    Full text link
    The effect of defects on the melting profile of short heterogeneous DNA chains are calculated using the Peyrard-Bishop Hamiltonian. The on-site potential on a defect site is represented by a potential which has only the short-range repulsion and the flat part without well of the Morse potential. The stacking energy between the two neigbouring pairs involving a defect site is also modified. The results are found to be in good agreement with the experiments.Comment: 11 pages including 5 postscript figure; To be appear in Phys. Rev.

    Determinants of Sanctions Effectiveness: Sensitivity Analysis Using New Data

    Get PDF
    In the literature on sanctions effectiveness, scholars have identified a number of factors that may contribute to sanctions success. However, existing empirical studies provide mixed findings concerning the effects of these factors. This research note explores two possible reasons for this lack of consistency in the literature. First, informed by the recent theories that suggest threats are an important part of sanctions episodes, we analyze both threats and imposed sanctions. Second, to lessen model dependency of empirical findings, we employ a methodology that permits us to check systematically the robustness of the empirical results under various model specifications. Using the newly released Threat and Imposition of Economic Sanctions data, our analyses of both threats and imposed sanctions show that two factors—involvement of international institutions and severe costs on target states—are positively and robustly related to sanctions success at every stage in sanctions episodes. Our analyses also identify a number of other variables that are systematically related to sanctions success, but the significance of these relationships depends on the specific model estimated. Finally, our results point to a number of differences at the threat and imposition stages, which suggests specific selection effects that should be explored in future work

    Switched Control of Electron Nuclear Spin Systems

    Full text link
    In this article, we study control of electron-nuclear spin dynamics at magnetic field strengths where the Larmor frequency of the nucleus is comparable to the hyperfine coupling strength. The quantization axis for the nuclear spin differs from the static B_0 field direction and depends on the state of the electron spin. The quantization axis can be switched by flipping the state of electron spin, allowing for universal control on nuclear spin states. We show that by performing a sequence of flips (each followed by a suitable delay), we can perform any desired rotation on the nuclear spins, which can also be conditioned on the state of the electron spin. These operations, combined with electron spin rotations can be used to synthesize any unitary transformation on the coupled electron-nuclear spin system. We discuss how these methods can be used for design of experiments for transfer of polarization from the electron to the nuclear spins

    Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape

    Get PDF
    We consider the cosmological dynamics associated with volume weighted measures of eternal inflation, in the Bousso-Polchinski model of the string theory landscape. We find that this measure predicts that observers are most likely to find themselves in low energy vacua with one flux considerably larger than the rest. Furthermore, it allows for a satisfactory anthropic explanation of the cosmological constant problem by producing a smooth, and approximately constant, distribution of potentially observable values of Lambda. The low energy vacua selected by this measure are often short lived. If we require anthropically acceptable vacua to have a minimum life-time of 10 billion years, then for reasonable parameters a typical observer should expect their vacuum to have a life-time of approximately 12 billion years. This prediction is model dependent, but may point toward a solution to the coincidence problem of cosmology.Comment: 35 pages, 8 figure

    Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains

    Full text link
    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than 1/(2J) per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing

    Coulomb and nuclear breakup effects in the single neutron removal reaction 197Au(17C,16C gamma)X

    Get PDF
    We analyze the recently obtained new data on the partial cross sections and parallel momentum distributions for transitions to ground as well as excited states of the 16C core, in the one-neutron removal reaction 197Au(17C,16C gamma)X at the beam energy of 61 MeV/nucleon. The Coulomb and nuclear breakup components of the one-neutron removal cross sections have been calculated within a finite range distorted wave Born approximation theory and an eikonal model, respectively. The nuclear contributions dominate the partial cross sections for the core excited states. By adding the nuclear and Coulomb cross sections together, a reasonable agreement is obtained with the data for these states. The shapes of the experimental parallel momentum distributions of the core states are described well by the theory.Comment: Revtex format, two figures included, to appear in Phys. Rev. C. (Rapid communications

    One-neutron knockout from 57^{57}Ni

    Get PDF
    The single-particle structure of 57^{57}Ni and level structure of 56^{56}Ni were investigated with the \mbox{9^{9}Be (57^{57} Ni,56^{56}Ni+γ\gamma)X\it{X}} reaction at 73 MeV/nucleon. An inclusive cross section of 41.4(12) mb was obtained for the reaction, compared to a theoretical prediction of 85.4 mb, hence only 48(2)% of the theoretical cross section is exhausted. This reduction in the observed spectroscopic strength is consistent with that found for lighter well-bound nuclei. One-neutron removal spectroscopic factors of 0.58(11) to the ground state and 3.7(2) to all excited states of 56^{56}Ni were deduced.Comment: Phys. Rev. C, accepte

    Astrophysical S_{17}(0) factor from a measurement of d(7Be,8B)n reaction at E_{c.m.} = 4.5 MeV

    Full text link
    Angular distribution measurements of 2^2H(7^7Be,7^7Be)2^2H and 2^2H(7^7Be,8^8B)nn reactions at Ec.m.E_{c.m.}\sim~4.5 MeV were performed to extract the astrophysical S17(0)S_{17}(0) factor using the asymptotic normalization coefficient (ANC) method. For this purpose a pure, low emittance 7^7Be beam was separated from the primary 7^7Li beam by a recoil mass spectrometer operated in a novel mode. A beam stopper at 0^{\circ} allowed the use of a higher 7^7Be beam intensity. Measurement of the elastic scattering in the entrance channel using kinematic coincidence, facilitated the determination of the optical model parameters needed for the analysis of the transfer data. The present measurement significantly reduces errors in the extracted 7^7Be(p,γ\gamma) cross section using the ANC method. We get S17S_{17}~(0)~=~20.7~±\pm~2.4 eV~b.Comment: 15 pages including 3 eps figures, one figure removed and discussions updated. Version to appear in Physical Review
    corecore