552 research outputs found

    Toward the Ab-initio Description of Medium Mass Nuclei

    Full text link
    As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.Comment: Contribution to Summary Report of EURISOL Topical and Town Meetings, 15-19 October 2012; missing affiliations added and corrected errors in Tab

    Ab-initio calculation of the 6Li{}^6Li binding energy with the Hybrid Multideterminant scheme

    Full text link
    We perform an ab-initio calculation for the binding energy of 6Li{}^6Li using the CD-Bonn 2000 NN potential renormalized with the Lee-Suzuki method. The many-body approach to the problem is the Hybrid Multideterminant method. The results indicate a binding energy of about 31MeV31 MeV, within a few hundreds KeV uncertainty. The center of mass diagnostics are also discussed.Comment: 18 pages with 3 figures. More calculations added, to be published in EPJ

    Beyond the Shell Model: The Canonical Nuclear Many-Body Problem as an Effective Theory

    Get PDF
    We describe a strategy for attacking the canonical nuclear structure problem ---bound-state properties of a system of point nucleons interacting via a two-body potential---which involves an expansion in the number of particles scattering at high momenta, but is otherwise exact. The required self-consistent solutions of the Bloch-Horowitz equation for effective interactions and operators are obtained by an efficient Green's function method based on the Lanczos algorithm. We carry out this program for the simplest nuclei, d and 3^3He, to contrast a rigorous effective theory with the shell model, thereby illustrating several of the uncontrolled approximations in the latter.Comment: Revtex; two columns; four pages; two figures; submitted to Phys. Rev. Let

    Discrepancy between experimental and theoretical β\beta-decay rates resolved from first principles

    Full text link
    β\beta-decay, a process that changes a neutron into a proton (and vice versa), is the dominant decay mode of atomic nuclei. This decay offers a unique window to physics beyond the standard model, and is at the heart of microphysical processes in stellar explosions and the synthesis of the elements in the Universe. For 50 years, a central puzzle has been that observed β\beta-decay rates are systematically smaller than theoretical predictions. This was attributed to an apparent quenching of the fundamental coupling constant gAg_A \simeq 1.27 in the nucleus by a factor of about 0.75 compared to the β\beta-decay of a free neutron. The origin of this quenching is controversial and has so far eluded a first-principles theoretical understanding. Here we address this puzzle and show that this quenching arises to a large extent from the coupling of the weak force to two nucleons as well as from strong correlations in the nucleus. We present state-of-the-art computations of β\beta-decays from light to heavy nuclei. Our results are consistent with experimental data, including the pioneering measurement for 100^{100}Sn. These theoretical advances are enabled by systematic effective field theories of the strong and weak interactions combined with powerful quantum many-body techniques. This work paves the way for systematic theoretical predictions for fundamental physics problems. These include the synthesis of heavy elements in neutron star mergers and the search for neutrino-less double-β\beta-decay, where an analogous quenching puzzle is a major source of uncertainty in extracting the neutrino mass scale.Comment: 20 pages, 18 figure

    Exact calculation of three-body contact interaction to second order

    Full text link
    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle Eˉ(kf)\bar E(k_f) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to Eˉ(kf)kf10\bar E(k_f)\sim k_f^{10} with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction.Comment: 9 pages, 6 figures, to be published in European Journal

    Flow equations for cold Bose gases

    Get PDF
    Wederive flow equations for cold atomic gases with one macroscopically populated energy level. The generator is chosen such that the ground state decouples from all other states in the system as the renormalization group flow progresses.Wepropose a self-consistent truncation scheme for the flow equations at the level of three-body operators and show how they can be used to calculate the ground state energy of a generalN-body system. Moreover, we provide a general method to estimate the truncation error in the calculated energies. Finally, we test our scheme by benchmarking to the exactly solvable Lieb–Liniger model and find good agreement for weak and moderate interaction strengths

    Modern topics in theoretical nuclear physics

    Full text link
    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde

    Boson-conserving one-nucleon transfer operator in the interacting boson model

    Get PDF
    The boson-conserving one-nucleon transfer operator in the interacting boson model (IBA) is reanalyzed. Extra terms are added to the usual form used for that operator. These new terms change generalized seniority by one unit, as the ones considered up to now. The results obtained using the new form for the transfer operator are compared with those obtained with the traditional form in a simple case involving the pseudo-spin Bose-Fermi symmetry UB(6)UF(12)U^{B}(6) \otimes U^F(12) in its UBF(5)UF(2)U^{BF}(5) \otimes U^F(2) limit. Sizeable differences are found. These results are of relevance in the study of transfer reactions to check nuclear supersymmetry and in the description of (\beta)-decay within IBA.Comment: 13 pages, 1 table, 0 figures. To be published in Phys. Rev.

    3N Scattering in a Three-Dimensional Operator Formulation

    Full text link
    A recently developed formulation for a direct treatment of the equations for two- and three-nucleon bound states as set of coupled equations of scalar functions depending only on vector momenta is extended to three-nucleon scattering. Starting from the spin-momentum dependence occurring as scalar products in two- and three-nucleon forces together with other scalar functions, we present the Faddeev multiple scattering series in which order by order the spin-degrees can be treated analytically leading to 3D integrations over scalar functions depending on momentum vectors only. Such formulation is especially important in view of awaiting extension of 3N Faddeev calculations to projectile energies above the pion production threshold and applications of chiral perturbation theory 3N forces, which are to be most efficiently treated directly in such three-dimensional formulation without having to expand these forces into a partial wave basis.Comment: 25 pages, 0 figure
    corecore