552 research outputs found
Toward the Ab-initio Description of Medium Mass Nuclei
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a
great challenge is how to approach the vast majority of open-shell (degenerate)
isotopes. We add realistic three-nucleon interactions to the state of the art
many-body Green's function theory of closed-shells, and find that physics of
neutron driplines is reproduced with very good quality. Further, we introduce
the Gorkov formalism to extend ab-initio theory to semi-magic, fully
open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74
confirm that this approach is indeed feasible. Combining these two advances
(open-shells and three-nucleon interactions) requires longer, technical, work
but it is otherwise within reach.Comment: Contribution to Summary Report of EURISOL Topical and Town Meetings,
15-19 October 2012; missing affiliations added and corrected errors in Tab
Ab-initio calculation of the binding energy with the Hybrid Multideterminant scheme
We perform an ab-initio calculation for the binding energy of using
the CD-Bonn 2000 NN potential renormalized with the Lee-Suzuki method. The
many-body approach to the problem is the Hybrid Multideterminant method. The
results indicate a binding energy of about , within a few hundreds KeV
uncertainty. The center of mass diagnostics are also discussed.Comment: 18 pages with 3 figures. More calculations added, to be published in
EPJ
Beyond the Shell Model: The Canonical Nuclear Many-Body Problem as an Effective Theory
We describe a strategy for attacking the canonical nuclear structure problem
---bound-state properties of a system of point nucleons interacting via a
two-body potential---which involves an expansion in the number of particles
scattering at high momenta, but is otherwise exact. The required
self-consistent solutions of the Bloch-Horowitz equation for effective
interactions and operators are obtained by an efficient Green's function method
based on the Lanczos algorithm. We carry out this program for the simplest
nuclei, d and He, to contrast a rigorous effective theory with the shell
model, thereby illustrating several of the uncontrolled approximations in the
latter.Comment: Revtex; two columns; four pages; two figures; submitted to Phys. Rev.
Let
Discrepancy between experimental and theoretical -decay rates resolved from first principles
-decay, a process that changes a neutron into a proton (and vice
versa), is the dominant decay mode of atomic nuclei. This decay offers a unique
window to physics beyond the standard model, and is at the heart of
microphysical processes in stellar explosions and the synthesis of the elements
in the Universe. For 50 years, a central puzzle has been that observed
-decay rates are systematically smaller than theoretical predictions.
This was attributed to an apparent quenching of the fundamental coupling
constant 1.27 in the nucleus by a factor of about 0.75 compared
to the -decay of a free neutron. The origin of this quenching is
controversial and has so far eluded a first-principles theoretical
understanding. Here we address this puzzle and show that this quenching arises
to a large extent from the coupling of the weak force to two nucleons as well
as from strong correlations in the nucleus. We present state-of-the-art
computations of -decays from light to heavy nuclei. Our results are
consistent with experimental data, including the pioneering measurement for
Sn. These theoretical advances are enabled by systematic effective
field theories of the strong and weak interactions combined with powerful
quantum many-body techniques. This work paves the way for systematic
theoretical predictions for fundamental physics problems. These include the
synthesis of heavy elements in neutron star mergers and the search for
neutrino-less double--decay, where an analogous quenching puzzle is a
major source of uncertainty in extracting the neutrino mass scale.Comment: 20 pages, 18 figure
Exact calculation of three-body contact interaction to second order
For a system of fermions with a three-body contact interaction the
second-order contributions to the energy per particle are
calculated exactly. The three-particle scattering amplitude in the medium is
derived in closed analytical form from the corresponding two-loop rescattering
diagram. We compare the (genuine) second-order three-body contribution to with the second-order term due to the density-dependent
effective two-body interaction, and find that the latter term dominates. The
results of the present study are of interest for nuclear many-body calculations
where chiral three-nucleon forces are treated beyond leading order via a
density-dependent effective two-body interaction.Comment: 9 pages, 6 figures, to be published in European Journal
Flow equations for cold Bose gases
Wederive flow equations for cold atomic gases with one macroscopically populated energy level. The
generator is chosen such that the ground state decouples from all other states in the system as the
renormalization group flow progresses.Wepropose a self-consistent truncation scheme for the flow
equations at the level of three-body operators and show how they can be used to calculate the ground
state energy of a generalN-body system. Moreover, we provide a general method to estimate the
truncation error in the calculated energies. Finally, we test our scheme by benchmarking to the exactly
solvable Lieb–Liniger model and find good agreement for weak and moderate interaction strengths
Modern topics in theoretical nuclear physics
Over the past five years there have been profound advances in nuclear physics
based on effective field theory and the renormalization group. In this brief,
we summarize these advances and discuss how they impact our understanding of
nuclear systems and experiments that seek to unravel their unknowns. We discuss
future opportunities and focus on modern topics in low-energy nuclear physics,
with special attention to the strong connections to many-body atomic and
condensed matter physics, as well as to astrophysics. This makes it an exciting
era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting
at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde
Boson-conserving one-nucleon transfer operator in the interacting boson model
The boson-conserving one-nucleon transfer operator in the interacting boson
model (IBA) is reanalyzed. Extra terms are added to the usual form used for
that operator. These new terms change generalized seniority by one unit, as the
ones considered up to now. The results obtained using the new form for the
transfer operator are compared with those obtained with the traditional form in
a simple case involving the pseudo-spin Bose-Fermi symmetry in its limit. Sizeable differences are
found. These results are of relevance in the study of transfer reactions to
check nuclear supersymmetry and in the description of (\beta)-decay within IBA.Comment: 13 pages, 1 table, 0 figures. To be published in Phys. Rev.
3N Scattering in a Three-Dimensional Operator Formulation
A recently developed formulation for a direct treatment of the equations for
two- and three-nucleon bound states as set of coupled equations of scalar
functions depending only on vector momenta is extended to three-nucleon
scattering. Starting from the spin-momentum dependence occurring as scalar
products in two- and three-nucleon forces together with other scalar functions,
we present the Faddeev multiple scattering series in which order by order the
spin-degrees can be treated analytically leading to 3D integrations over scalar
functions depending on momentum vectors only. Such formulation is especially
important in view of awaiting extension of 3N Faddeev calculations to
projectile energies above the pion production threshold and applications of
chiral perturbation theory 3N forces, which are to be most efficiently treated
directly in such three-dimensional formulation without having to expand these
forces into a partial wave basis.Comment: 25 pages, 0 figure
- …
