177 research outputs found

    Experimental and numerical investigation on the impact response of CFRP under 3-point-bending

    Get PDF
    The strain rate-dependent material characteristic of carbon fiber reinforced plastics (CFRP) is widely known and has been investigated in detail at coupon level. In this study, for the first time the strain rate dependent characteristic of a three-dimensional CFRP structure was investigated. The evolution of the determined strain rate dependency was correlated with the results at coupon level. For this purpose two special 3-point-bending fixtures were developed to obtain the flexural impact response of the investigated T700S DT120 prepreg system at coupon and component (hat profile) level. The rectangular coupon specimens were loaded with quasi-static to intermediate impact velocities from 3.3x105^{-5} to 10ms1^{-1} while the structural sub components were tested using impact velocities from 3.3x105^{-5} to 1m s1^{-1} With increasing impact velocities, the experimental tests showed a significant increase in force at first failure and maximum deflection at coupon level. The increases in force were of 52% and 120%, respectively. However, the increase for structural hat profile components was just 12.4% due to a different failure mode. The observed initial failure modes were compressive failure provoked by fiber kinking for the coupon and interlaminar shear failure for the structural component. Regardless of the different failure modes this work proves the necessity of considering the strain rate dependency of a composite material to accurately predict the maximum load capacity of a CFRP structure during a dynamic load event. Additionally, the comparison of the experimental results restults to numerical results revealed weaknesses in the prediction accuracy of the currently used models

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Arbitration between model-free and model-based control is not affected by transient changes in tonic serotonin levels

    Get PDF
    Background: Serotonin has been suggested to modulate decision-making by influencing the arbitration between model-based and model-free control. Disruptions in these control mechanisms are involved in mental disorders such as drug dependence or obsessive-compulsive disorder. While previous reports indicate that lower brain serotonin levels reduce model-based control, it remains unknown whether increases in serotonergic availability might thus increase model-based control. Moreover, the mediating neural mechanisms have not been studied yet. Aim: The first aim of this study was to investigate whether increased/decreased tonic serotonin levels affect the arbitration between model-free and model-based control. Second, we aimed to identify the underlying neural processes. Methods: We employed a sequential two-stage Markov decision-task and measured brain responses during functional magnetic resonance imaging in 98 participants in a randomized, double-blind cross-over within-subject design. To investigate the influence of serotonin on the balance between model-free and model-based control, we used a tryptophan intervention with three intervention levels (loading, balanced, depletion). We hypothesized that model-based behaviour would increase with higher serotonin levels. Results: We found evidence that neither model-free nor model-based control were affected by changes in tonic serotonin levels. Furthermore, our tryptophan intervention did not elicit relevant changes in Blood-Oxygenation-Level Dependent activity

    Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization

    Get PDF
    By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces

    Paroxysmal nocturnal hemoglobinuria (PNH): higher sensitivity and validity in diagnosis and serial monitoring by flow cytometric analysis of reticulocytes

    Get PDF
    Flow cytometric analysis of GPI-anchored proteins (GPI-AP) is the gold standard for diagnosis of paroxysmal nocturnal hemoglobinuria (PNH). Due to therapy options and the relevance of GPI-deficient clones for prognosis in aplastic anaemia detection of PNH is gaining importance. However, no generally accepted standard has been established. This study analysed the usefulness of a flow cytometric panel with CD58, CD59 on reticulocytes and erythrocytes, CD24/CD66b and CD16, FLAER on granulocytes and CD14, and CD48 on monocytes. Actual cut-off (mean + 2 SD) for GPI-deficient cells was established in healthy blood donors. We studied 1,296 flow cytometric results of 803 patients. Serial monitoring was analysed during a median follow-up of 1,039 days in 155 patients. Of all, 22% and 48% of 155 follow-up patients. showed significant GPI-AP-deficiency at time of initial analyses. During follow-up in 9%, a new PNH diagnosis, and in 28%, a significant change of size or lineage involvement was demonstrated. Highly significant correlations for GPI-AP deficiency were found within one cell lineage (r2 = 0.61–0.95, p < 0.0001) and between the different cell lineages (r2 = 0.49–0.88, p < 0.0001). Especially for detection of small GPI-deficient populations, reticulocytes and monocytes proved to be sensitive diagnostic tools. Our data showed superiority of reticulocyte analyses compared with erythrocyte analyses due to transfusion and hemolysis independency especially in cases with small GPI-deficient populations. In conclusion, a screening panel of at least two different GPI-AP markers on granulocytes, erythrocytes, and reticulocytes provides a simple and rapid method to detect even small GPI-deficient populations. Among the markers in our panel, CD58 and CD59 on reticulocytes, CD24/66b, and eventually FLAER on granulocytes as well as CD14 on monocytes were most effective for flow cytometric diagnosis of GPI deficiency

    The elusive neural signature of emotion regulation capabilities: Evidence from a large-scale consortium

    Get PDF
    Cognitive reappraisal is a fundamental emotion regulation strategy for mental and physical well-being, but how its neural mechanisms relate to individual differences remains poorly understood. In a consortium effort analyzing 40 fMRI datasets (N=2,175), we examined the relationship between neural activation during reappraisal tasks and three core individual difference indices of reappraisal capabilities: (1) trait questionnaires, (2) task-based affective ratings, and (3) amygdala down-regulation. Strikingly, there was no shared overlap across these three common indices. Only a very weak correlation emerged between amygdala down-regulation and task-based affective ratings. Whole-brain analyses revealed no reliable neural associations with trait questionnaires, and associations with task-based affective ratings fell outside canonical emotion regulation networks (e.g., prefrontal circuitry). Moreover, amygdala down-regulation, often interpreted as a stable individual marker, was confounded by person-specific whole-brain responses — a limitation extending to fMRI research beyond the emotion regulation domain. These findings challenge the assumption that an individual’s prefrontal activity is a valid indicator of their reappraisal capabilities and suggest that common trait, behavioral, and neural measures might capture distinct facets of emotion regulation. More broadly, our results highlight concrete methodological challenges for fMRI research on individual differences, with implications extending beyond emotion regulation to the neuroscience of personality, psychopathology, and general well-being

    Flow cytometry as a rapid analytical tool to determine physiological responses to changing O2 and iron concentration by Magnetospirillum gryphiswaldense strain MSR-1

    Get PDF
    Magnetotactic bacteria (MTB) are a diverse group of bacteria that synthesise magnetosomes, magnetic membrane-bound nanoparticles that have a variety of diagnostic, clinical and biotechnological applications. We present the development of rapid methods using flow cytometry to characterize several aspects of the physiology of the commonly-used MTB Magnetospirillum gryphiswaldense MSR-1. Flow cytometry is an optical technique that rapidly measures characteristics of individual bacteria within a culture, thereby allowing determination of population heterogeneity and also permitting direct analysis of bacteria. Scatter measurements were used to measure and compare bacterial size, shape and morphology. Membrane permeability and polarization were measured using the dyes propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol to determine the viability and ‘health’ of bacteria. Dyes were also used to determine changes in concentration of intracellular free iron and polyhydroxylakanoate (PHA), a bacterial energy storage polymer. These tools were then used to characterize the responses of MTB to different O2 concentrations and iron-sufficient or iron-limited growth. Rapid analysis of MTB physiology will allow development of bioprocesses for the production of magnetosomes, and will increase understanding of this fascinating and useful group of bacteria
    corecore