98 research outputs found
Effect of the molecular structure of the polymer and nucleation on the optical properties of polypropylene homo- and copolymers.
Two soluble nucleating agents were used to modify the optical properties of nine PP homo- and random copolymers. The ethylene content of the polymers changed between 0 and 5.3 wt%. Chain regularity was characterized by the stepwise isothermal segregation technique (SIST), while optical properties by the measurement of the haze of injection molded samples. Crystallization and melting characteristics were determined by differential scanning calorimetry (DSC). The analysis of the results proved that lamella thickness and change in crystallinity influence haze only slightly. A model was introduced which describes quantitatively the dependence of nucleation efficiency and haze on the concentration of the nucleating agent. The model assumes that the same factors influence the peak temperature of crystallization and optical properties. The analysis of the results proved that the assumption is valid under the same crystallization conditions. The parameters of the model depend on the molecular architecture of the polymer. Chain regularity determines supermolecular structure and thus the dependence of optical properties on nucleation
“Magnetic Force Microscopy and Energy Loss Imaging of Superparamagnetic Iron Oxide Nanoparticles”
We present quantitative, high spatially resolved magnetic force microscopy imaging of samples based on 11 nm diameter superparamagnetic iron oxide nanoparticles in air at room temperature. By a proper combination of the cantilever resonance frequency shift, oscillation amplitude and phase lag we obtain the tip-sample interaction maps in terms of force gradient and energy dissipation. These physical quantities are evaluated in the frame of a tip-particle magnetic interaction model also including the tip oscillation amplitude. Magnetic nanoparticles are characterized both in bare form, after deposition on a flat substrate, and as magnetically assembled fillers in a polymer matrix, in the form of nanowires. The latter approach makes it possible to reveal the magnetic texture in a composite sample independently of the surface topography
Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract
Policy impacts on regulating ecosystem services: looking at the implications of 60 years of landscape change on soil erosion prevention in a Mediterranean silvo-pastoral system
European agricultural landscapes, common agricultural policy and ecosystem services: a review
Since the 1950s, intensification and scale enlargement of agriculture have changed agricultural landscapes across Europe. The intensification and scale enlargement of farming was initially driven by the large-scale application of synthetic fertilizers, mechanization and subsidies of the European Common Agricultural Policy (CAP). Then, after the 1990s, a further intensification and scale enlargement, and land abandonment in less favored areas was caused by globalization of commodity markets and CAP reforms. The landscape changes during the past six decades have changed the flows and values of ecosystem services. Here, we have reviewed the literature on agricultural policies and management, landscape structure and composition, and the contribution of ecosystem services to regional competitiveness. The objective was to define an analytical framework to determine and assess ecosystem services at the landscape scale. In contrast to natural ecosystems, ecosystem service flows and values in agricultural landscapes are often a result of interactions between agricultural management and ecological structures. We describe how land management by farmers and other land managers relates to landscape structure and composition. We also examine the influence of commodity markets and policies on the behavior of land managers. Additionally, we studied the influence of consumer demand on flows and values of the ecosystem services that originate from the agricultural landscape
Study of quasi-monophase Y-type hexaferrite Ba2Mg2Fe12O22 powder
We present the structural and magnetic properties of a multiferroic Ba2Mg2Fe12O22 hexaferrite composite containing a small amount of MgFe2O4. The composite material was obtained by auto-combustion synthesis and, alternatively, by co-precipitation. The Ba2Mg2Fe12O22 particles obtained by co-precipitation have an almost perfect hexagonal shape in contrast with those prepared by auto-combustion. Two magnetic phase transitions, responsible for the composite’s multiferroic properties, were observed, namely, at 183 K and 40 K for the material produced by auto-combustion, and at 196 K and 30 K for the sample prepared by co-precipitation. No magnetic phase transitions in these temperature ranges were observed for a MgFe2O4 sample, which shows that the magnesium ferrite does not affect the multiferroic properties of this type of multiferroic metarials
Magnetic properties of nanosized MgFe2O4 powders prepared by auto-combustion
peer reviewedTargets were prepared to be used for magnetron sputtering and laser ablation and their microstructural and magnetic properties were investigated. The base material was nanosized MgFe2O4 powder produced by citrate auto-combustion synthesis. The auto-combusted powders were annealed at temperatures in the range 600 - 1000°C in air to study the effect of temperature on thofe formation MgFe2O4. The saturation magnetization Ms was 24.30 emu/g at room temperature. © Published under licence by IOP Publishing Ltd
Magneto-Optical Behavior of Fe<sub>3</sub>O<sub>4</sub> Films Obtained by Modified Ferrite Plating
- …
