1,314 research outputs found
Phase Variation in the Pulse Profile of SMC X-1
We present the results of timing and spectral analysis of X-ray high state
observations of the high-mass X-ray pulsar SMC X-1 with Chandra, XMM-Newton,
and ROSAT, taken between 1991 and 2001. The source has L_X ~ 3-5 x 10^38
ergs/s, and the spectra can be modeled as a power law plus blackbody with kT_BB
\~ 0.18 keV and reprocessed emission radius R_BB ~ 2 x 10^8 cm, assuming a
distance of 60 kpc to the source. Energy-resolved pulse profiles show several
distinct forms, more than half of which include a second pulse in the soft
profile, previously documented only in hard energies. We also detect
significant variation in the phase shift between hard and soft pulses, as has
recently been reported in Her X-1. We suggest an explanation for the observed
characteristics of the soft pulses in terms of precession of the accretion
disk.Comment: 4 pages, 4 figures, accepted for publication in ApJL; v2 minor
corrections, as will appear in ApJ
Critical Phenomena in Neutron Stars I: Linearly Unstable Nonrotating Models
We consider the evolution in full general relativity of a family of linearly
unstable isolated spherical neutron stars under the effects of very small,
perturbations as induced by the truncation error. Using a simple ideal-fluid
equation of state we find that this system exhibits a type-I critical
behaviour, thus confirming the conclusions reached by Liebling et al. [1] for
rotating magnetized stars. Exploiting the relative simplicity of our system, we
are able carry out a more in-depth study providing solid evidences of the
criticality of this phenomenon and also to give a simple interpretation of the
putative critical solution as a spherical solution with the unstable mode being
the fundamental F-mode. Hence for any choice of the polytropic constant, the
critical solution will distinguish the set of subcritical models migrating to
the stable branch of the models of equilibrium from the set of subcritical
models collapsing to a black hole. Finally, we study how the dynamics changes
when the numerically perturbation is replaced by a finite-size, resolution
independent velocity perturbation and show that in such cases a nearly-critical
solution can be changed into either a sub or supercritical. The work reported
here also lays the basis for the analysis carried in a companion paper, where
the critical behaviour in the the head-on collision of two neutron stars is
instead considered [2].Comment: 15 pages, 9 figure
Relativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic
magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh
refinement (AMR). The fluid equations are solved using a finite difference
Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger.
Hyperbolic divergence cleaning is used to control the
constraint. We present results from three flat space tests, and examine the
accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel
solution. The AMR simulations substantially improve performance while
reproducing the resolution equivalent unigrid simulation results. Finally, we
discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
Collapse and black hole formation in magnetized, differentially rotating neutron stars
The capacity to model magnetohydrodynamical (MHD) flows in dynamical,
strongly curved spacetimes significantly extends the reach of numerical
relativity in addressing many problems at the forefront of theoretical
astrophysics. We have developed and tested an evolution code for the coupled
Einstein-Maxwell-MHD equations which combines a BSSN solver with a high
resolution shock capturing scheme. As one application, we evolve magnetized,
differentially rotating neutron stars under the influence of a small seed
magnetic field. Of particular significance is the behavior found for
hypermassive neutron stars (HMNSs), which have rest masses greater the mass
limit allowed by uniform rotation for a given equation of state. The remnant of
a binary neutron star merger is likely to be a HMNS. We find that magnetic
braking and the magnetorotational instability lead to the collapse of HMNSs and
the formation of rotating black holes surrounded by massive, hot accretion tori
and collimated magnetic field lines. Such tori radiate strongly in neutrinos,
and the resulting neutrino-antineutrino annihilation (possibly in concert with
energy extraction by MHD effects) could provide enough energy to power
short-hard gamma-ray bursts. To explore the range of outcomes, we also evolve
differentially rotating neutron stars with lower masses and angular momenta
than the HMNS models. Instead of collapsing, the non-hypermassive models form
nearly uniformly rotating central objects which, in cases with significant
angular momentum, are surrounded by massive tori.Comment: Submitted to a special issue of Classical and Quantum Gravity based
around the New Frontiers in Numerical Relativity meeting at the Albert
Einstein Institute, Potsdam, July 17-21, 200
Critical Collapse of an Ultrarelativistic Fluid in the Limit
In this paper we investigate the critical collapse of an ultrarelativistic
perfect fluid with the equation of state in the limit of
. We calculate the limiting continuously self similar (CSS)
solution and the limiting scaling exponent by exploiting self-similarity of the
solution. We also solve the complete set of equations governing the
gravitational collapse numerically for and
compare them with the CSS solutions. We also investigate the supercritical
regime and discuss the hypothesis of naked singularity formation in a generic
gravitational collapse. The numerical calculations make use of advanced methods
such as high resolution shock capturing evolution scheme for the matter
evolution, adaptive mesh refinement, and quadruple precision arithmetic. The
treatment of vacuum is also non standard. We were able to tune the critical
parameter up to 30 significant digits and to calculate the scaling exponents
accurately. The numerical results agree very well with those calculated using
the CSS ansatz. The analysis of the collapse in the supercritical regime
supports the hypothesis of the existence of naked singularities formed during a
generic gravitational collapse.Comment: 23 pages, 16 figures, revised version, added new results of
investigation of a supercritical collapse and the existence of naked
singularities in generic gravitational collaps
Continuous Variable Quantum State Sharing via Quantum Disentanglement
Quantum state sharing is a protocol where perfect reconstruction of quantum
states is achieved with incomplete or partial information in a multi-partite
quantum networks. Quantum state sharing allows for secure communication in a
quantum network where partial information is lost or acquired by malicious
parties. This protocol utilizes entanglement for the secret state distribution,
and a class of "quantum disentangling" protocols for the state reconstruction.
We demonstrate a quantum state sharing protocol in which a tripartite entangled
state is used to encode and distribute a secret state to three players. Any two
of these players can collaborate to reconstruct the secret state, whilst
individual players obtain no information. We investigate a number of quantum
disentangling processes and experimentally demonstrate quantum state
reconstruction using two of these protocols. We experimentally measure a
fidelity, averaged over all reconstruction permutations, of F = 0.73. A result
achievable only by using quantum resources.Comment: Published, Phys. Rev. A 71, 033814 (2005) (7 figures, 11 pages
Criticality and convergence in Newtonian collapse
We study through numerical simulation the spherical collapse of isothermal
gas in Newtonian gravity. We observe a critical behavior which occurs at the
threshold of gravitational instability leading to core formation. For a given
initial density profile, we find a critical temperature, which is of the same
order as the virial temperature of the initial configuration. For the exact
critical temperature, the collapse converges to a self-similar form, the first
member in Hunter's family of self-similar solutions. For a temperature close to
the critical value, the collapse first approaches this critical solution. Later
on, in the supercritical case, the collapse converges to another self-similar
solution, which is called the Larson-Penston solution. In the subcritical case,
the gas bounces and disperses to infinity. We find two scaling laws: one for
the collapsed mass in the supercritical case and the other for the maximum
density reached before dispersal in the subcritical case. The value of the
critical exponent is measured to be in the supercritical case,
which agrees well with the predicted value . These critical
properties are quite similar to those observed in the collapse of a radiation
fluid in general relativity. We study the response of the system to temperature
fluctuation and discuss astrophysical implications for the insterstellar medium
structure and for the star formation process. Newtonian critical behavior is
important not only because it provides a simple model for general relativity
but also because it is relevant for astrophysical systems such as molecular
clouds.Comment: 15 pages, 8 figures, accepted for publication in PRD, figures 1 and 3
at lower resolution than in journal version, typos correcte
Boosting jet power in black hole spacetimes
The extraction of rotational energy from a spinning black hole via the
Blandford-Znajek mechanism has long been understood as an important component
in models to explain energetic jets from compact astrophysical sources. Here we
show more generally that the kinetic energy of the black hole, both rotational
and translational, can be tapped, thereby producing even more luminous jets
powered by the interaction of the black hole with its surrounding plasma. We
study the resulting Poynting jet that arises from single boosted black holes
and binary black hole systems. In the latter case, we find that increasing the
orbital angular momenta of the system and/or the spins of the individual black
holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure
Fifteen years of XMM-Newton and Chandra monitoring of Sgr A*: Evidence for a recent increase in the bright flaring rate
We present a study of the X-ray flaring activity of Sgr A* during all the 150
XMM-Newton and Chandra observations pointed at the Milky Way center over the
last 15 years. This includes the latest XMM-Newton and Chandra campaigns
devoted to monitoring the closest approach of the very red Br-Gamma emitting
object called G2. The entire dataset analysed extends from September 1999
through November 2014. We employed a Bayesian block analysis to investigate any
possible variations in the characteristics (frequency, energetics, peak
intensity, duration) of the flaring events that Sgr A* has exhibited since
their discovery in 2001. We observe that the total bright-or-very bright flare
luminosity of Sgr A* increased between 2013-2014 by a factor of 2-3 (~3.5 sigma
significance). We also observe an increase (~99.9% significance) from
0.27+-0.04 to 2.5+-1.0 day^-1 of the bright-or-very bright flaring rate of Sgr
A*, starting in late summer 2014, which happens to be about six months after
G2's peri-center passage. This might indicate that clustering is a general
property of bright flares and that it is associated with a stationary noise
process producing flares not uniformly distributed in time (similar to what is
observed in other quiescent black holes). If so, the variation in flaring
properties would be revealed only now because of the increased monitoring
frequency. Alternatively, this may be the first sign of an excess accretion
activity induced by the close passage of G2. More observations are necessary to
distinguish between these two hypotheses.Comment: Accepted for publication in MNRA
WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics
The accurate modelling of astrophysical scenarios involving compact objects
and magnetic fields, such as the collapse of rotating magnetized stars to black
holes or the phenomenology of gamma-ray bursts, requires the solution of the
Einstein equations together with those of general-relativistic
magnetohydrodynamics. We present a new numerical code developed to solve the
full set of general-relativistic magnetohydrodynamics equations in a dynamical
and arbitrary spacetime with high-resolution shock-capturing techniques on
domains with adaptive mesh refinements. After a discussion of the equations
solved and of the techniques employed, we present a series of testbeds carried
out to validate the code and assess its accuracy. Such tests range from the
solution of relativistic Riemann problems in flat spacetime, over to the
stationary accretion onto a Schwarzschild black hole and up to the evolution of
oscillating magnetized stars in equilibrium and constructed as consistent
solutions of the coupled Einstein-Maxwell equations.Comment: minor changes to match the published versio
- …
