22,477 research outputs found
Magnetic quantum phase transitions of the antiferromagnetic J_{1}-J_{2} Heisenberg model
We obtain the complete phase diagram of the antiferromagnetic -
model, , within the framework of the
nonlinear sigma model. We find two magnetically ordered phases, one with N\'
eel order, for , and another with collinear order, for
, separated by a nonmagnetic region, for , where a gapped spin liquid is found. The transition at is of
the second order while the one at is of the first order and the
spin gaps cross at . Our results are exact at
and agree with numerical results from different methods.Comment: 4 pages, 5 figure
Kondo Quantum Criticality of Magnetic Adatoms in Graphene
We examine the exchange Hamiltonian for magnetic adatoms in graphene with
localized inner shell states. On symmetry grounds, we predict the existence of
a class of orbitals that lead to a distinct class of quantum critical points in
graphene, where the Kondo temperature scales as
near the critical coupling , and the local spin is effectively screened
by a \emph{super-ohmic} bath. For this class, the RKKY interaction decays
spatially with a fast power law . Away from half filling, we show
that the exchange coupling in graphene can be controlled across the quantum
critical region by gating. We propose that the vicinity of the Kondo quantum
critical point can be directly accessed with scanning tunneling probes and
gating.Comment: 4.1 pages, 3 figures. Added erratum correcting exponent nu=1/3. All
the other results remain vali
Diferentes enfoques teóricos de investigaçao sobre o ensino e aprendizagem da demonstraçao em geometria
Neste texto, pretendo estabelecer ligações entre a perspectiva apresentada por Harel e Sowder (2007) e outras perspectivas teóricas de investigação, ligadas ao ensino e aprendizagem da demonstração em geometria. Especificamente, com a perpectiva apresentada no artigo “proofs as bears of mathematical knowledge” (Hanna e Barbeau, 2008) e com a perspective ontosemiótica em educação matemática (Godino et al., 2007) na qual está focada a minha própria investigação. Harel e Sowder (2007) estabeleceram um grupo de questões relativas a vários factores: Factores de natureza histórica, epistemológica e matemática; factores de natureza cognitica e, factores de natureza educacional e sócio-culturais. Estabeleceram questões fundamentais, como por exemplo: O que é demonstrar?Porquê ensinar a demonstrar?(...)(p. 806). O significado destas questões será discutido segundo os enfoques teóricos acima referidos
Abordagens moleculares no estudo da diversidade microbiana
A importância dos microrganismos na manutenção da vida na Terra é reconhecida por todos. Estes organismos microscópicos são relevantes em áreas tão diversas como a Saúde, Agricultura, Indústria ou Ambiente. O número estimado de todas as espécies é de 100 milhões, das quais 2 milhões foram formalmente descritas. Das cerca de 1,5 a 3,5 milhões de espécies fúngicas que se estimam existir, apenas 5% se encontram descritas. Tradicionalmente, a identificação de espécies de fungos baseia-se no seu isolamento e análise da morfologia das suas estruturas reprodutoras. Embora de grande utilidade, a caracterização morfológica é limitada devido ao reduzido número de caracteres que podem ser analisados, da dependência das condições de cultura e das variações intrínsecas do microrganismo. Actualmente, métodos moleculares baseados na sequenciação do espaçador interno do transcrito de rDNA (ITS) têm vindo a ser utilizados na identificação eficaz de espécies fúngicas. Estudos populacionais têm recorrido à amplificação da região ITS e comparação dos perfis electroforéticos em gradientes desnaturantes (DGGE ou TGGE) de diferentes amostras. Recentemente, o desenvolvimento de técnicas de sequenciação massiva permitiram a emergência de uma nova área- a metagenómica - que pode ser aplicada a comunidades de microrganismos sem a necessidade de os isolar ou cultivar. Este facto adquire especial relevância por se estimar que apenas 17% dos fungos serão capazes de ser cultivados in vitro.
Nesta apresentação serão abordados as estratégias que permitiram a evolução da metagenómica. Os desafios da identificação de microrganismos em comunidades serão discutidos, focando o caso particular da diversidade fúngica em amostras de solos.Financiado pela FCT, projecto PTDC/AGR-AAM/099556/200
The Wheeler-DeWitt Quantization Can Solve the Singularity Problem
We study the Wheeler-DeWitt quantum cosmology of a spatially flat Friedmann
cosmological model with a massless free scalar field. We compare the consistent
histories approach with the de Broglie-Bohm theory when applied to this simple
model under two different quantization schemes: the Schr\"odinger-like
quantization, which essentially takes the square-root of the resulting
Klein-Gordon equation through the restriction to positive frequencies and their
associated Newton-Wigner states, or the induced Klein-Gordon quantization, that
allows both positive and negative frequencies together. We show that the
consistent histories approach can give a precise answer to the question
concerning the existence of a quantum bounce if and only if one takes the
single frequency approach and within a single family of histories, namely, a
family containing histories concerning properties of the quantum system at only
two specific moments of time: the infinity past and the infinity future. In
that case, as shown by Craig and Singh \cite{CS}, there is no quantum bounce.
In any other situation, the question concerning the existence of a quantum
bounce has no meaning in the consistent histories approach. On the contrary, we
show that if one considers the de Broglie-Bohm theory, there are always states
where quantum bounces occur in both quantization schemes. Hence the assertion
that the Wheeler-DeWitt quantization does not solve the singularity problem in
cosmology is not precise. To address this question, one must specify not only
the quantum interpretation adopted but also the quantization scheme chosen.Comment: 13 pages, 1 figur
Conductivity of suspended and non-suspended graphene at finite gate voltage
We compute the DC and the optical conductivity of graphene for finite values
of the chemical potential by taking into account the effect of disorder, due to
mid-gap states (unitary scatterers) and charged impurities, and the effect of
both optical and acoustic phonons. The disorder due to mid-gap states is
treated in the coherent potential approximation (CPA, a self-consistent
approach based on the Dyson equation), whereas that due to charged impurities
is also treated via the Dyson equation, with the self-energy computed using
second order perturbation theory. The effect of the phonons is also included
via the Dyson equation, with the self energy computed using first order
perturbation theory. The self-energy due to phonons is computed both using the
bare electronic Green's function and the full electronic Green's function,
although we show that the effect of disorder on the phonon-propagator is
negligible. Our results are in qualitative agreement with recent experiments.
Quantitative agreement could be obtained if one assumes water molelcules under
the graphene substrate. We also comment on the electron-hole asymmetry observed
in the DC conductivity of suspended graphene.Comment: 13 pages, 11 figure
- …
