1,264 research outputs found

    Large deviations for a damped telegraph process

    Full text link
    In this paper we consider a slight generalization of the damped telegraph process in Di Crescenzo and Martinucci (2010). We prove a large deviation principle for this process and an asymptotic result for its level crossing probabilities (as the level goes to infinity). Finally we compare our results with the analogous well-known results for the standard telegraph process

    Magnetic interaction of Co ions near the {10\bar{1}0} ZnO surface

    Full text link
    Co-doped ZnO is the prototypical dilute magnetic oxide showing many of the characteristics of ferromagnetism. The microscopic origin of the long range order however remains elusive, since the conventional mechanisms for the magnetic interaction, such as super-exchange and double exchange, fail either at the fundamental or at a quantitative level. Intriguingly, there is a growing evidence that defects both in point-like or extended form play a fundamental role in driving the magnetic order. Here we explore one of such possibilities by performing {\it ab initio} density functional theory calculations for the magnetic interaction of Co ions at or near a ZnO \{101ˉ\bar{1}0\} surface. We find that extended surface states can hybridize with the ee-levels of Co and efficiently mediate the magnetic order, although such a mechanism is effective only for ions placed in the first few atomic planes near the surface. We also find that the magnetic anisotropy changes at the surface from an hard-axis easy-plane to an easy axis, with an associated increase of its magnitude. We then conclude that clusters with high densities of surfacial Co ions may display blocking temperatures much higher than in the bulk

    Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO

    Get PDF
    We have utilized a comprehensive set of experimental techniques such as transmission electron microscopy (TEM) and synchrotron-based x-ray absorption spectroscopy (XAS) and the respective x-ray linear dichroism and x-ray magnetic circular dichroism to characterize the correlation of structural, chemical and magnetic properties of Co-doped ZnO samples. It can be established on a quantitative basis that the superparamagnetic (SPM) behavior observed by integral superconducting quantum interference device magnetometry is not an intrinsic property of the material but stems from precipitations of metallic Co. Their presence is revealed by TEM as well as XAS. Annealing procedures for these SPM samples were also studied, and the observed changes in the magnetic properties found to be due to a chemical reduction or oxidation of the metallic Co species

    ZnO:Co Diluted Magnetic Semiconductor or Hybrid Nanostructure for Spintronics?

    Full text link
    We have studied the influence of intrinsic and extrinsic defects in the magnetic and electrical transport properties of Co-doped ZnO thin films. X ray absorption measurements show that Co substitute Zn in the ZnO structure and it is in the 2+ oxidation state. Magnetization (M) measurements show that doped samples are mainly paramagnetic. From M vs. H loops measured at 5 K we found that the values of the orbital L and spin S numbers are between 1 and 1.3 for L and S = 3/2, in agreement with the representative values for isolated Co 2+. The obtained negative values of the Curie-Weiss temperatures indicate the existence of antiferromagnetic interactions between transition metal atoms.Comment: To be published in Journal of Materials Scienc

    Fragility of the Free-Energy Landscape of a Directed Polymer in Random Media

    Full text link
    We examine the sensitiveness of the free-energy landscape of a directed polymer in random media with respect to various kinds of infinitesimally weak perturbation including the intriguing case of temperature-chaos. To this end, we combine the replica Bethe ansatz approach outlined in cond-mat/0112384, the mapping to a modified Sinai model and numerically exact calculations by the transfer-matrix method. Our results imply that for all the perturbations under study there is a slow crossover from a weakly perturbed regime where rare events take place to a strongly perturbed regime at larger length scales beyond the so called overlap length where typical events take place leading to chaos, i.e. a complete reshuffling of the free-energy landscape. Within the replica space, the evidence for chaos is found in the factorization of the replicated partition function induced by infinitesimal perturbations. This is the reflex of explicit replica symmetry breaking.Comment: 29 pages, Revtex4, ps figure

    A real space renormalization group approach to spin glass dynamics

    Full text link
    The slow non-equilibrium dynamics of the Edwards-Anderson spin glass model on a hierarchical lattice is studied by means of a coarse-grained description based on renormalization concepts. We evaluate the isothermal aging properties and show how the occurrence of temperature chaos is connected to a gradual loss of memory when approaching the overlap length. This leads to rejuvenation effects in temperature shift protocols and to rejuvenation--memory effects in temperature cycling procedures with a pattern of behavior parallel to experimental observations.Comment: 4 pages, 4 figure

    Structure and peculiarities of the (8 x n)-type Si(001) surface prepared in a molecular-beam epitaxy chamber: a scanning tunneling microscopy study

    Full text link
    A clean Si(001) surface thermally purified in an ultrahigh vacuum molecular-beam epitaxy chamber has been investigated by means of scanning tunneling microscopy. The morphological peculiarities of the Si(001) surface have been explored in detail. The classification of the surface structure elements has been carried out, the dimensions of the elements have been measured, and the relative heights of the surface relief have been determined. A reconstruction of the Si(001) surface prepared in the molecular-beam epitaxy chamber has been found to be (8 x n). A model of the Si(001)-(8 x n) surface structure is proposed.Comment: 4 pages, 8 figures. Complete versio

    Spin glasses and algorithm benchmarks: A one-dimensional view

    Full text link
    Spin glasses are paradigmatic models that deliver concepts relevant for a variety of systems. However, rigorous analytical results are difficult to obtain for spin-glass models, in particular for realistic short-range models. Therefore large-scale numerical simulations are the tool of choice. Concepts and algorithms derived from the study of spin glasses have been applied to diverse fields in computer science and physics. In this work a one-dimensional long-range spin-glass model with power-law interactions is discussed. The model has the advantage over conventional systems in that by tuning the power-law exponent of the interactions the effective space dimension can be changed thus effectively allowing the study of large high-dimensional spin-glass systems to address questions as diverse as the existence of an Almeida-Thouless line, ultrametricity and chaos in short range spin glasses. Furthermore, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms.Comment: 10 pages, 8 figures (two in crappy quality due to archive restrictions). Proceedings of the International Workshop on Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200

    Temperature shifts in the Sinai model: static and dynamical effects

    Full text link
    We study analytically and numerically the role of temperature shifts in the simplest model where the energy landscape is explicitely hierarchical, namely the Sinai model. This model has both attractive features (there are valleys within valleys in a strict self similar sense), but also one important drawback: there is no phase transition so that the model is, in the large size limit, effectively at zero temperature. We compute various static chaos indicators, that are found to be trivial in the large size limit, but exhibit interesting features for finite sizes. Correspondingly, for finite times, some interesting rejuvenation effects, related to the self similar nature of the potential, are observed. Still, the separation of time scales/length scales with temperatures in this model is much weaker that in experimental spin-glasses.Comment: 19 pages, Revtex4, eps figure
    corecore