4,000 research outputs found

    Simple Combined Model for Nonlinear Excitations in DNA

    Full text link
    We propose a new simple model for DNA denaturation bases on the pendulum model of Englander\cite{A1} and the microscopic model of Peyrard {\it et al.},\cite{A3} so called "combined model". The main parameters of our model are: the coupling constant kk along each strand, the mean stretching yy^\ast of the hydrogen bonds, the ratio of the damping constant and driven force γ/F\gamma/F. We show that both the length LL of unpaired bases and the velocity vv of kinks depend on not only the coupling constant kk but also the temperature TT. Our results are in good agreement with previous works.Comment: 6 pages, 10 figures, submitted to Phys. Rev.

    Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    Get PDF
    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method

    On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    Get PDF
    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation

    Optimal Control Modification for Time-Scale Separated Systems

    Get PDF
    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method

    Mode-Based Sensing and Actuation Techniques for Multi-Objective Flexible Aircraft Control

    Get PDF
    Intelligent sensing and actuation designs are explored as a means to improve performance of a gust load alleviation control design for a flexible wing aircraft equipped with wing-shaping control surfaces. The proposed techniques rely on identification of the dominant structural modes during specified flight conditions and uses them as a basis for sensor placement and actuator utilization. Specifically, a strategy for sensor placement is discussed that uses target mode shape capture as a mean to improve state estimation quality. A second strategy that reduces the number of wing-shaping control inputs using mode and objective-based shape functions as virtual input channels is also presented. Both techniques are demonstrated in simulation of a flexible wing transport aircraft utilizing a multi-objective control system designed to suppress flexible motion, minimize gust and maneuver load, and reduce drag

    Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Get PDF
    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft
    corecore