102 research outputs found
Development of improved semi-organic structural adhesives for elevated temperature applications Technical summary report, 1 ~JUL. 1964 - 29 ~FEB. 1968
Titanium chelate polymer adhesive formulation for aluminum joint curing in high temperature application
Electronic structure and dynamics of optically excited single-wall carbon nanotubes
We have studied the electronic structure and charge-carrier dynamics of
individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using
optical and electron-spectroscopic techniques. The electronic structure of
semiconducting SWNTs in the band-gap region is analyzed using near-infrared
absorption spectroscopy. A semi-empirical expression for
transition energies, based on tight-binding calculations is found to give
striking agreement with experimental data. Time-resolved PL from dispersed
SWNT-micelles shows a decay with a time constant of about 15 ps. Using
time-resolved photoemission we also find that the electron-phonon ({\it e-ph})
coupling in metallic tubes is characterized by a very small {\it e-ph}
mass-enhancement of 0.0004. Ultrafast electron-electron scattering of
photo-excited carriers in nanotube ropes is finally found to lead to internal
thermalization of the electronic system within about 200 fs.Comment: 10 pages, 10 figures, submitted to Applied Physics
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
Stellar Populations of Lyman Break Galaxies at z approx. to 1-3 in the HST/WFC3 Early Release Science Observations
We analyze the spectral energy distributions (SEDs) of Lyman break galaxies . (LBGs) at z approx = 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST /WFC3 obse,rvations cover about 50 arcmin2 in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z approx = 1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope f3 is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at .z approx = 1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1a uncertainties. This could imply that identical dropout selection technique, at all. redshifts, find physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of approx 0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of approx 0.90. These relations hold true - within luminosities probed in this study - for LBGs from z approx = 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z approx = 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z approx = 2 is essential. The future HST UV surveys,. both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution
Expedition 395 summary
The intersection between the Mid-Atlantic Ridge and Iceland hotspot provides a natural laboratory where the composition and dynamics of Earth's upper mantle can be observed. Plume-ridge interaction drives variations in the melting regime, which result in a range of crustal types, including a series of V-shaped ridges (VSRs) and V-shaped troughs (VSTs) located south of Iceland. Mantle upwelling beneath Iceland dynamically supports regional bathymetry, and its variations may lead to changes in the height of oceanic gateways, which in turn control the flow of deep water on geologic timescales. Expeditions 384, 395C, and 395 recovered extensive successions of basaltic crust and thick (up to 1.3 km) overlying sediment cover, including successions through a number of contourite drifts of regional significance. Major, trace, and isotope geochemistry of basalts recovered during these expeditions will provide insight into spatial and temporal variations in mantle melting processes. Such analyses will provide data for testing the hypothesis that the Iceland plume thermally pulses on two timescales (5–10 and ~30 Ma), leading to fundamental changes in crustal architecture. This idea will be tested against alternative hypotheses involving propagating rifts and buoyant mantle upwelling. The rapidly accumulated sediments of contourite drifts have the potential to yield exceptional millennial-scale paleoceanographic records, including proxies for current strength, which is thought to be modulated by the dynamic support of the Greenland-Scotland Ridge, an oceanic gateway of global import. The recovered sediments also provide a record of subarctic climate change stretching back to the latest Eocene, including the long-term evolution of the Greenland ice sheet, critical intervals of Miocene and Pliocene warmth, the intensification of Northern Hemisphere glaciation, and Pleistocene millennial-scale variability.The objectives of Expeditions 395, 395C, and 384 are to explore the relationships between deep Earth processes, ocean circulation, and climate. These objectives were addressed by recovering sediment and basement cores from six sites, completed across three expeditions. Sites U1555 and U1563 are located at a VST/VSR pair nearest to the Reykjanes Ridge, on ~2.8 and 5.2 My old crust, respectively. Sites U1554 and U1562 are located in Björn drift above a VST/VSR pair, on ~12.4 and 14.2 My old crust, respectively. Site U1564 is located in Gardar drift above 32.4 My old oceanic crust that is devoid of V-shaped features. Finally, Site U1602 is located on the eastern Greenland margin above crust that is estimated to be Eocene in age and thus formed during the initial separation of Greenland from Scandinavia. Considered together, the sediments, basalts, and vast array of measurements collected during Expeditions 395, 395C, and 384 will provide a major advance in our understanding of mantle dynamics and the linked nature of Earth's interior, oceans, and climate.<p/
- …
