1,542 research outputs found

    Precision study of B^* B\pi coupling for the static heavy-light meson

    Get PDF
    We compute the B^*B\pi coupling \hat{g}_{\infty} for static heavy-light meson using all-to-all propagators. It is shown that low-mode averaging with 100 low-lying eigenmodes indeed improves the signal for the 2-point and 3-point functions for heavy-light meson significantly. Our study suggests that the all-to-all propagator will be a very efficient method for high precision computation of the B^*B\pi coupling especially in unquenched QCD where the number of configurations is limited.Comment: 30 pages, 25 figures, typos correcte

    Constraints on a New Light Spin-One Particle from Rare b -> s Transitions

    Full text link
    The anomalously large like-sign dimuon charge asymmetry in semileptonic b-hadron decays recently measured by the D0 Collaboration may be hinting at the presence of CP-violating new physics in the mixing of B_s mesons. It has been suggested that the effect of a nonstandard spin-1 particle lighter than the b quark with flavor-changing couplings to b and s quarks can reproduce the D0 result within its one-sigma range. Here we explore the possibility that the new particle also couples to charged leptons l=e,mu and thus contributes to rare b -> s processes involving the leptons. We consider in particular constraints on its couplings from existing experimental data on the inclusive B -> X_s l^+ l^- and exclusive B -> K^{(*)} l^+ l^- decays, as well as the anomalous magnetic moments of the leptons. We find that there is parameter space of the particle that is allowed by the current data. Future measurements of these B transitions and rare decays of the B_s meson, such as B_s -> (phi,eta,eta') l^+ l^- and B_s -> l^+ l^-, at LHCb and next-generation B factories can probe its presence or couplings more stringently.Comment: 19 pages, 5 figure

    Lattice QCD Study of the Pentaquark Baryons

    Full text link
    We study the spin 12\frac12 hadronic state in quenched lattice QCD to search for a possible S=+1S=+1 pentaquark resonance. Simulations are carried out on 83×248^3\times 24, 103×2410^3\times 24, 123×2412^3\times 24 and 163×2416^3\times 24 lattices at β\beta=5.7 at the quenched level with the standard plaquette gauge action and Wilson quark action. We adopt two independent operators with I=0 and JP=12J^P=\frac12 to construct a 2×22\times 2 correlation matrix. After the diagonalization of the correlation matrix, we successfully obtain the energies of the ground-state and the 1st excited-state in this channel. The volume dependence of the energies suggests the existence of a possible resonance state slightly above the NK threshold in I=0 and JP=12J^P=\frac12^- channel.Comment: Talk given at the International Workshop on PENTAQUARK04, SPring-8, Japan, 20-23 July 2004; 7 pages, 3 figure

    Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    Get PDF
    We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.Comment: 59 pages, 34 figure
    corecore