13,747 research outputs found

    Projection-based measurement and identification

    Full text link
    A recently developed Projection-based Digital Image Correlation (P-DVC) method is here extended to 4D (space and time) displacement field measurement and mechanical identification based on a single radiograph per loading step instead of volumes as in standard DVC methods. Two levels of data reductions are exploited, namely, reduction of the data acquisition (and time) by a factor of 1000 and reduction of the solution space by exploiting model reduction techniques. The analysis of a complete tensile elastoplastic test composed of 127 loading steps performed in 6 minutes is presented. The 4D displacement field as well as the elastoplastic constitutive law are identified. Keywords: Image-based identification, Model reduction, Fast 4D identification, In-situ tomography measurements. INTRODUCTION Identification and validation of increasingly complex mechanical models is a major concern in experimental solid mechanics. The recent developments of computed tomography coupled with in-situ tests provide extremely rich and non-destructive analyses [1]. In the latter cases, the sample was imaged inside a tomograph, either with interrupted mechanical load or with a continuously evolving loading and on-the-fly acquisitions (as ultra-fast X-ray synchrotron tomography, namely, 20 Hz full scan acquisition for the study of crack propagation [2]). Visualization of fast transformations, crack openings, or unsteady behavior become accessible. Combined with full-field measurements, in-situ tests offer a quantitative basis for identifying a broad range of mechanical behavior.Comment: SEM 2019, Jun 2019, Reno, United State

    Spinfoams in the holomorphic representation

    Full text link
    We study a holomorphic representation for spinfoams. The representation is obtained via the Ashtekar-Lewandowski-Marolf-Mour\~ao-Thiemann coherent state transform. We derive the expression of the 4d spinfoam vertex for Euclidean and for Lorentzian gravity in the holomorphic representation. The advantage of this representation rests on the fact that the variables used have a clear interpretation in terms of a classical intrinsic and extrinsic geometry of space. We show how the peakedness on the extrinsic geometry selects a single exponential of the Regge action in the semiclassical large-scale asymptotics of the spinfoam vertex.Comment: 10 pages, 1 figure, published versio

    First Experience in the Mass Production of Components for the LHC Dipoles

    Get PDF
    This paper reports on the manufacturing features and difficulties experienced for the preliminary mass production of the main mechanical components of the dipole cold mass. The production of about 600 km of superconducting coil copper wedges, 5'000 coil layer jump spacers and boxes, 12'500'000 austenitic steel collars and 5'800'000 low-carbon yoke laminations is spread over 4 European countries and involves 6 manufactory firms. The general technical requirements for the manufacturing process as well as the imposed production checks and quality controls are reviewed. An overview of the preliminary results is presented with an outlook towards the analysis and statistical which are in a process to be implemented for the follow-up of the mass production

    Contraints on Matter from Asymptotic Safety

    Full text link
    Recent studies of the ultraviolet behaviour of pure gravity suggest that it admits a non-Gaussian attractive fixed point, and therefore that the theory is asymptotically safe. We consider the effect on this fixed point of massless minimally coupled matter fields. The existence of a UV attractive fixed point puts bounds on the type and number of such fields.Comment: 5 pages, 2 figures, revtex4; introduction expande

    On the Ultraviolet Behaviour of Newton's constant

    Full text link
    We clarify a point concerning the ultraviolet behaviour of the Quantum Field Theory of gravity, under the assumption of the existence of an ultraviolet Fixed Point. We explain why Newton's constant should to scale like the inverse of the square of the cutoff, even though it is technically inessential. As a consequence of this behaviour, the existence of an UV Fixed Point would seem to imply that gravity has a built-in UV cutoff when described in Planck units, but not necessarily in other units.Comment: 8 pages; CQG class; minor changes and rearrangement

    Asymptotics of Spinfoam Amplitude on Simplicial Manifold: Lorentzian Theory

    Full text link
    The present paper studies the large-j asymptotics of the Lorentzian EPRL spinfoam amplitude on a 4d simplicial complex with an arbitrary number of simplices. The asymptotics of the spinfoam amplitude is determined by the critical configurations. Here we show that, given a critical configuration in general, there exists a partition of the simplicial complex into three type of regions R_{Nondeg}, R_{Deg-A}, R_{Deg-B}, where the three regions are simplicial sub-complexes with boundaries. The critical configuration implies different types of geometries in different types of regions, i.e. (1) the critical configuration restricted into R_{Nondeg}impliesanondegeneratediscreteLorentziangeometry,(2)thecriticalconfigurationrestrictedintoRDegA implies a nondegenerate discrete Lorentzian geometry, (2) the critical configuration restricted into R_{Deg-A} is degenerate of type-A in our definition of degeneracy, but implies a nondegenerate discrete Euclidean geometry on R_{Deg-A}, (3) the critical configuration restricted into R_{Deg-B} is degenerate of type-B, and implies a vector geometry on R_{Deg-B}. With the critical configuration, we further make a subdivision of the regions R_{Nondeg} and R_{Deg-A} into sub-complexes (with boundary) according to their Lorentzian/Euclidean oriented 4-simplex volume V_4(v), such that sgn(V_4(v)) is a constant sign on each sub-complex. Then in the each sub-complex, the spinfoam amplitude at the critical configuration gives the Regge action in Lorentzian or Euclidean signature respectively on R_{Nondeg} or R_{Deg-A}. The Regge action reproduced here contains a sign factor sgn(V_4(v)) of the oriented 4-simplex volume. Therefore the Regge action reproduced here can be viewed a discretized Palatini action with on-shell connection. Finally the asymptotic formula of the spinfoam amplitude is given by a sum of the amplitudes evaluated at all possible critical configurations, which are the products of the amplitudes associated to different type of geometries.Comment: 54 pages, 2 figures, reference adde

    Spinning Loop Black Holes

    Full text link
    In this paper we construct four Kerr-like spacetimes starting from the loop black hole Schwarzschild solutions (LBH) and applying the Newman-Janis transformation. In previous papers the Schwarzschild LBH was obtained replacing the Ashtekar connection with holonomies on a particular graph in a minisuperspace approximation which describes the black hole interior. Starting from this solution, we use a Newman-Janis transformation and we specialize to two different and natural complexifications inspired from the complexifications of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that the space-times obtained in this way are singularity free and thus there are no naked singularities. We show that the transformation move, if any, the causality violating regions of the Kerr metric far from r=0. We study the space-time structure with particular attention to the horizons shape. We conclude the paper with a discussion on a regular Reissner-Nordstrom black hole derived from the Schwarzschild LBH and then applying again the Newmann-Janis transformation.Comment: 18 pages, 18 figure

    Operator Spin Foam Models

    Full text link
    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.

    Asymptotics of LQG fusion coefficients

    Full text link
    The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in Loop Quantum Gravity. In this paper we give a simple analytic formula of the EPRL fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2)L×SU(2)RSU(2)_L\times SU(2)_R semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.Comment: 14 pages, minor change
    corecore