800 research outputs found
The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae
Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv/Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response
Underpriced Default Spread Exacerbates Market Crashes
In this paper, we develop a specific observable symptom of a banking system that underprices the default spread in non-recourse asset-backed lending. Using three different data sets for 18 countries and property types, we find that, following a negative demand shock, the “underpricing” economies experience far deeper asset market crashes than economies in which the put option is correctly priced. Furthermore, only one of the countries in our sample continues to exhibit the underpricing symptom following a market crash. This indicates that market crashes have a cleansing effect and eliminate underpricing at least for a period of time. This makes investing in such markets safer following a negative demand shock.real estate bubble, lender optimism, disaster myopia, Asian financial crisis
New method for analytical photovoltaic parameters identification: meeting manufacturer’s datasheet for different ambient conditions
At present, photovoltaic energy is one of the most important renewable energy sources. The demand for solar panels has been continuously growing, both in the industrial electric sector and in the private sector. In both cases the analysis of the solar panel efficiency is extremely important in order to maximize the energy production. In order to have a more efficient photovoltaic system, the most accurate understanding of this system is required. However, in most of the cases the only information available in this matter is reduced, the experimental testing of the photovoltaic device being out of consideration, normally for budget reasons. Several methods, normally based on an equivalent circuit model, have been developed to extract the I-V curve of a photovoltaic device from the small amount of data provided by the manufacturer. The aim of this paper is to present a fast, easy, and accurate analytical method, developed to calculate the equivalent circuit parameters of a solar panel from the only data that manufacturers usually provide. The calculated circuit accurately reproduces the solar panel behavior, that is, the I-V curve. This fact being extremely important for practical reasons such as selecting the best solar panel in the market for a particular purpose, or maximize the energy extraction with MPPT (Maximum Peak Power Tracking) methods
References
www.biogeosciences-discuss.net/11/10673/2014/ doi:10.5194/bgd-11-10673-2014 © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalga
Emission of short-lived halocarbons by three common tropical marine microalgae during batch culture
Very short-lived halocarbons of marine biogenic origin play an important role in affecting tropospheric and stratospheric chemistry. In recent years, more attention has been paid to tropical regions where the influence of strong convective forces is responsible for rapid uplifting of the volatile organohalogens from the open surface waters into the atmosphere. This laboratory-based study reports on three common tropical marine microalgae capable of emitting a range of short-lived halocarbons, namely, CH3I, CHBr3, CH2Br2, CHBr2Cl, and CHCl3. Chlorophyll a and cell density were highly correlated to the quantity of all five compounds emitted (p < 0.01). The diatom Amphora sp. UMACC 370 had a higher range of CH3I emission rate (10.55–64.18 pmol mg−1 chl a day−1, p < 0.01) than the cyanobacterium Synechococcus sp. UMACC 371 and chlorophyte Parachlorella sp. UMACC 245 (1.04–3.86 pmol mg−1 chl a day−1 and 0–2.16 pmol mg−1 chl a day−1, p < 0.01, respectively). Furthermore, iodine was the dominant halogen emitted in terms of total combined halide mass of all three species. Overall, the emissions of short-lived halocarbons were both species- and growth phase-dependent, highlighting the importance of considering cell physiological conditions when determining gas emission rates
Near-field MIMO communication links
A procedure to achieve near-field multiple input multiple output (MIMO) communication with equally strong channels is demonstrated in this paper. This has applications in near-field wireless communications, such as Chip-to-Chip (C2C) communication or wireless links between printed circuit boards. Designing the architecture of these wireless C2C networks is, however, based on standard engineering design tools. To attain this goal, a network optimization procedure is proposed, which introduces decoupling and matching networks. As a demonstration, this optimization procedure is applied to a 2-by-2 MIMO with dipole antennas. The potential benefits and design trade-offs are discussed for implementation of wireless radio-frequency interconnects in chip-to-chip or device-to-device communication such as in an Internet-of-Things scenario
Analysis of a near field MIMO wireless channel using 5.6 GHz dipole antennas
Understanding the impact of interference upon the performance of a multiple input multiple output (MIMO) based device is of paramount importance in ensuring a design is both resilient and robust. In this work the effect of element-element interference in the creation of multiple channels of a wireless link approaching the near-field regime is studied. The elements of the 2-antenna transmit- and receive-arrays are chosen to be identical folded dipole antennas operating at 5.6 GHz. We find that two equally strong channels can be created even if the antennas interact at sub-wavelength distances, thus confirming previous theoretical predictions
Predictors of Intraspinal Pressure and Optimal Cord Perfusion Pressure After Traumatic Spinal Cord Injury.
BACKGROUND/OBJECTIVES: We recently developed techniques to monitor intraspinal pressure (ISP) and spinal cord perfusion pressure (SCPP) from the injury site to compute the optimum SCPP (SCPPopt) in patients with acute traumatic spinal cord injury (TSCI). We hypothesized that ISP and SCPPopt can be predicted using clinical factors instead of ISP monitoring. METHODS: Sixty-four TSCI patients, grades A-C (American spinal injuries association Impairment Scale, AIS), were analyzed. For 24 h after surgery, we monitored ISP and SCPP and computed SCPPopt (SCPP that optimizes pressure reactivity). We studied how well 28 factors correlate with mean ISP or SCPPopt including 7 patient-related, 3 injury-related, 6 management-related, and 12 preoperative MRI-related factors. RESULTS: All patients underwent surgery to restore normal spinal alignment within 72 h of injury. Fifty-one percentage had U-shaped sPRx versus SCPP curves, thus allowing SCPPopt to be computed. Thirteen percentage, all AIS grade A or B, had no U-shaped sPRx versus SCPP curves. Thirty-six percentage (22/64) had U-shaped sPRx versus SCPP curves, but the SCPP did not reach the minimum of the curve, and thus, an exact SCPPopt could not be calculated. In total 5/28 factors were associated with lower ISP: older age, excess alcohol consumption, nonconus medullaris injury, expansion duroplasty, and less intraoperative bleeding. In a multivariate logistic regression model, these 5 factors predicted ISP as normal or high with 73% accuracy. Only 2/28 factors correlated with lower SCPPopt: higher mean ISP and conus medullaris injury. In an ordinal multivariate logistic regression model, these 2 factors predicted SCPPopt as low, medium-low, medium-high, or high with only 42% accuracy. No MRI factors correlated with ISP or SCPPopt. CONCLUSIONS: Elevated ISP can be predicted by clinical factors. Modifiable factors that may lower ISP are: reducing surgical bleeding and performing expansion duroplasty. No factors accurately predict SCPPopt; thus, invasive monitoring remains the only way to estimate SCPPopt
- …
