246 research outputs found
Typing Copyless Message Passing
We present a calculus that models a form of process interaction based on
copyless message passing, in the style of Singularity OS. The calculus is
equipped with a type system ensuring that well-typed processes are free from
memory faults, memory leaks, and communication errors. The type system is
essentially linear, but we show that linearity alone is inadequate, because it
leaves room for scenarios where well-typed processes leak significant amounts
of memory. We address these problems basing the type system upon an original
variant of session types.Comment: 50 page
Exact Analysis of Level-Crossing Statistics for (d+1)-Dimensional Fluctuating Surfaces
We carry out an exact analysis of the average frequency
in the direction of positive-slope crossing of a given level
such that, , of growing surfaces in spatial
dimension . Here, is the surface height at time , and
is its mean value. We analyze the problem when the surface growth
dynamics is governed by the Kardar-Parisi-Zhang (KPZ) equation without surface
tension, in the time regime prior to appearance of cusp singularities (sharp
valleys), as well as in the random deposition (RD) model. The total number
of such level-crossings with positive slope in all the directions is then
shown to scale with time as for both the KPZ equation and the RD
model.Comment: 22 pages, 3 figure
A numerical evaluation of the scalar hexagon integral in the physical region
We derive an analytic expression for the scalar one-loop pentagon and hexagon functions which is convenient for subsequent numerical integration. These functions are of relevance in the computation of next-to-leading order radiative corrections to multi-particle cross sections. The hexagon integral is represented in terms of n-dimensional triangle functions and (n+2)-dimensional box functions. If infrared poles are present this representation naturally splits into a finite and a pole part. For a fast numerical integration of the finite part we propose simple one- and two-dimensional integral representations. We set up an iterative numerical integration method to calculate these integrals directly in an efficient way. The method is illustrated by explicit results for pentagon and hexagon functions with some generic physical kinematics
Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers
Coagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The CNS inhabit various ecological habitats, ranging between the environment and the host. In order to obtain a better insight into the host response, an experimental infection was carried out in eight healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain originating from sawdust bedding, an intramammary Staphylococcus chromogenes strain originating from a persistent intramammary infection (S. chromogenes IM) and a S. chromogenes strain isolated from a heifer's teat apex (S. chromogenes TA). Each heifer was inoculated in the mammary gland with 1.0 x 10(6) colony forming units of each bacterial strain (one strain per udder quarter), whereas the remaining quarter was infused with phosphate-buffered saline. Overall, the CNS evoked a mild local host response. The somatic cell count increased in all S. fleurettii-inoculated quarters, although the strain was eliminated within 12 h. The two S. chromogenes strains were shed in larger numbers for a longer period. Bacterial and somatic cell counts, as well as neutrophil responses, were higher after inoculation with S. chromogenes IM than with S. chromogenes TA. In conclusion, these results suggest that S. chromogenes might be better adapted to the mammary gland than S. fleurettii. Furthermore, not all S. chromogenes strains induce the same local host response
Geological uncertainty and investment risk in CO<sub>2</sub>-enhanced oil recovery
CO2-enhanced oil recovery (CO2-EOR) has the potential to combine the environmental benefits of greenhouse gas emission reduction and the optimal use of natural resources. In economic simulations, CO2-EOR is generally approached in a classical way, with fixed parameters and limited flexibility. We propose a more realistic approach that combines realistic investment decision making with geological and techno-economic uncertainties. A cluster of seven active oil fields in the North Sea is simulated using a newly developed software tool, allowing to assess when EOR technology replaces primary production. CO2 can be delivered from different onshore locations via ship or pipeline. The introduction of near-realistic investment geological and economic risks in CO2-EOR projections will allow for in-depth assessment of CO2-EOR at the level of the North-Sea Basis, as well as of individual potential projects
The 1st Verified Software Competition, Extended Experience Report
We, the organizers and participants, report our experiences
from the 1st Veried Software Competition, held in August 2010 in Edinburgh
at the VSTTE 2010 conferenc
The 1st Verified Software Competition, Extended Experience Report
We, the organizers and participants, report our experiences
from the 1st Veried Software Competition, held in August 2010 in Edinburgh
at the VSTTE 2010 conferenc
Regulatory T Cells in Human Lymphatic Filariasis: Stronger Functional Activity in Microfilaremics
Infection with filarial parasites is associated with T cell hyporesponsiveness, which is thought to be partly mediated by their ability to induce regulatory T cells (Tregs) during human infections. This study investigates the functional capacity of Tregs from different groups of filarial patients to suppress filaria-specific immune responses during human filariasis. Microfilaremic (MF), chronic pathology (CP) and uninfected endemic normal (EN) individuals were selected in an area endemic for Brugia timori in Flores island, Indonesia. PBMC were isolated, CD4CD25hi cells were magnetically depleted and in vitro cytokine production and proliferation in response to B. malayi adult worm antigen (BmA) were determined in total and Treg-depleted PBMC. In MF subjects BmA-specific T and B lymphocyte proliferation as well as IFN-gamma, IL-13 and IL-17 responses were lower compared to EN and CP groups. Depletion of Tregs restored T cell as well as B cell proliferation in MF-positives, while proliferative responses in the other groups were not enhanced. BmA-induced IL-13 production was increased after Treg removal in MF-positives only. Thus, filaria-associated Tregs were demonstrated to be functional in suppressing proliferation and possibly Th2 cytokine responses to BmA. These suppressive effects were only observed in the MF group and not in EN or CP. These findings may be important when considering strategies for filarial treatment and the targeted prevention of filaria-induced lymphedema
Towards a dynamic and sustainable management of geological resources
peer reviewedAbstract
The subsurface provides multiple resources of which the exploitation has a lasting impact on future potential provision. Establishing sustainability in terms of fundamental principles, and fitting these principles into a practical framework, is an ongoing endeavour focused mainly on surface activities. The principles of ecological economics lead to six challenges that summarize the current limitations of implementing science-based sustainable management of geological resources in the medium to deep subsurface: integrating value pluralism, defining sustainable scale, evaluating interferences in the subsurface, guaranteeing environmental justice, optimising environmental and economic efficiency, and handling uncertainties. Assessing and managing geological reservoirs is particularly intriguing because of slow resource regeneration, complex spatial and temporal interactions, concealment, and naturally dictated opportunities. In answer to the challenges, visions are proposed that outline how an indicator framework is needed for guidance, how indicators require reservoir models with extended spatial and temporal scope, how environmental inequity of social values are to be considered, and how real option games combined with life cycle assessment can be used for optimising efficiency. These individual solutions are different facets of the same problem, and can be integrated into one overarching solution that takes the form of dynamic multi-criteria decision analysis.12. Responsible consumption and productio
DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically
The question of the nature of the dark matter in the Universe remains one of
the most outstanding unsolved problems in basic science. One of the best
motivated particle physics candidates is the lightest supersymmetric particle,
assumed to be the lightest neutralino - a linear combination of the
supersymmetric partners of the photon, the Z boson and neutral scalar Higgs
particles. Here we describe DarkSUSY, a publicly-available advanced numerical
package for neutralino dark matter calculations. In DarkSUSY one can compute
the neutralino density in the Universe today using precision methods which
include resonances, pair production thresholds and coannihilations. Masses and
mixings of supersymmetric particles can be computed within DarkSUSY or with the
help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator
bounds can be checked to identify viable dark matter candidates. DarkSUSY also
computes a large variety of astrophysical signals from neutralino dark matter,
such as direct detection in low-background counting experiments and indirect
detection through antiprotons, antideuterons, gamma-rays and positrons from the
Galactic halo or high-energy neutrinos from the center of the Earth or of the
Sun. Here we describe the physics behind the package. A detailed manual will be
provided with the computer package.Comment: 35 pages, no figure
- …
