311 research outputs found
Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the -process calculations
The rare-earth peak in the -process abundance pattern depends sensitively
on both the astrophysical conditions and subtle changes in nuclear structure in
the region. This work takes an important step elucidating the nuclear structure
and reducing the uncertainties in -process calculations via precise atomic
mass measurements at the JYFLTRAP double Penning trap. Nd, Pm,
Sm, and Gd have been measured for the first time and the
precisions for Nd, Pm, Eu, Gd, and
Tb have been improved considerably. Nuclear structure has been probed
via two-neutron separation energies and neutron pairing energy metrics
. The data do not support the existence of a subshell closure at .
Neutron pairing has been found to be weaker than predicted by theoretical mass
models. The impact on the calculated -process abundances has been studied.
Substantial changes resulting in a smoother abundance distribution and a better
agreement with the solar -process abundances are observed.Comment: 8 pages, 4 figures, accepted for publication in Physical Review
Letter
The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory
Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.This research work was funded by a Core Award from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). Also supported by a Wellcome Trust Senior Investigator Award (104631/Z/14/Z) awarded to TWR. CE was supported by the Swiss National Science Foundation (PA00P1_134135) and the Vienna Science and Technology Fund (WWTF VRG13-007)
Role of Dopamine D2 Receptors in Human Reinforcement Learning
Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, while loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically-determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.Neuropsychopharmacology accepted article peview online, 09 April 2014; doi:10.1038/npp.2014.84
Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: evidence of positive heterosis and gene–gene interaction on working memory functioning.
The COMT Va
A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction?
Addiction to a wide range of substances of abuse has been suggested to reflect a ‘Reward Deficiency Syndrome'. That is, drugs are said to stimulate the reward mechanisms so intensely that, to compensate, the population of dopamine D(2) receptors (DD2R) declines. The result is that an increased intake is necessary to experience the same degree of reward. Without an additional intake, cravings and withdrawal symptoms result. A suggestion is that food addiction, in a similar manner to drugs of abuse, decrease DD2R. The role of DD2R in obesity was therefore examined by examining the association between body mass index (BMI) and the Taq1A polymorphism, as the A1 allele is associated with a 30–40% lower number of DD2R, and is a risk factor for drug addiction. If a lower density of DD2R is indicative of physical addiction, it was argued that if food addiction occurs, those with the A1 allele should have a higher BMI. A systematic review found 33 studies that compared the BMI of those who did and did not have the A1 allele. A meta-analysis of the studies compared those with (A1/A1 and A1/A2) or without (A2/A2) the A1 allele; no difference in BMI was found (standardized mean difference 0.004 (s.e. 0.021), variance 0.000, Z=0.196, P<0.845). It was concluded that there was no support for a reward deficiency theory of food addiction. In contrast, there are several reports that those with the A1 allele are less able to benefit from an intervention that aimed to reduce weight, possibly a reflection of increased impulsivity
Recent Upgrades of the Gas Handling System for the Cryogenic Stopping Cell of the FRS Ion Catcher
In this paper, the major upgrades and technical improvements of the buffer
gas handling system for the cryogenic stopping cell of the FRS Ion Catcher at
GSI/FAIR (in Darmstadt, Germany) are described. The upgrades include
implementation of new gas lines and gas purifiers to achieve a higher buffer
gas cleanliness for a more efficient extraction of reactive ions as well as
suppression of the molecular background ionized in the stopping cell.
Furthermore, additional techniques have been implemented for improved
monitoring and quantification of the purity of the helium buffer gas
High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL
An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an Ar-36 beam on a Ni-nat target. It was used together with the JYFLTRAP double Penning trap to measure the masses of Zr-82, Nb-84, Mo-86, Tc-88, and Ru-89 ground states and the isomeric state Tc-88(m). Of these, Ru-89 and Tc-88(m) weremeasured for the first time. The precision of measurements of Zr-82, Nb-84, and Tc-88 was significantly improved. The literature value for Mo-86 was verified. The measured states in Tc-88 were compared to shell-model calculations and additional constraints on the spins and level scheme were obtained. The masses of Mo-82 and Ru-86 have been predicted using the measured masses of their mirror partners and theoretical mirror displacement energies, resulting in more tightly bound nuclei with smaller atomic mass uncertainties than reported in the literature.Peer reviewe
Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques
Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the 15− isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16+ spin-trap isomer. In 130In, the lowest-lying (10−) isomeric state at 58.6(82) keV was resolved for the first time using the phase-imaging ion cyclotron resonance technique. The energy difference between the 10− and 1− states in 130In, stemming from parallel/antiparallel coupling of (π0g9/2−1)⊗(ν0h11/2−1), has been found to be around 200 keV lower than predicted by the shell model. Precise information on the energies of the excited states determined in this work is crucial for producing new improved effective interactions for the nuclear shell model description of nuclei near 132Sn
- …
