28,959 research outputs found

    Activity of water in aqueous systems; A frequently neglected property

    Get PDF
    In this critical review, the significance of the term ‘activity’ is examined in the context of the properties of aqueous solutions. The dependence of the activity of water(ℓ) at ambient pressure and 298.15 K on solute molality is examined for aqueous solutions containing neutral solutes, mixtures of neutral solutes and salts. Addition of a solute to water(ℓ) always lowers its thermodynamic activity. For some solutes the stabilisation of water(ℓ) is less than and for others more than in the case where the thermodynamic properties of the aqueous solution are ideal. In one approach this pattern is accounted for in terms of hydrate formation. Alternatively the pattern is analysed in terms of the dependence of practical osmotic coefficients on the composition of the aqueous solution and then in terms of solute–solute interactions. For salt solutions the dependence of the activity of water on salt molalities is compared with that predicted by the Debye–Hückel limiting law. The analysis is extended to consideration of the activities of water in binary aqueous mixtures. The dependence on mole fraction composition of the activity of water in binary aqueous mixtures is examined. Different experimental methods for determining the activity of water in aqueous solutions are critically reviewed. The role of water activity is noted in a biochemical context, with reference to the quality, stability and safety of food and finally with regard to health science.

    Lasing on a narrow transition in a cold thermal strontium ensemble

    Full text link
    Highly stable laser sources based on narrow atomic transitions provide a promising platform for direct generation of stable and accurate optical frequencies. Here we investigate a simple system operating in the high-temperature regime of cold atoms. The interaction between a thermal ensemble of 88^{88}Sr at mK temperatures and a medium-finesse cavity produces strong collective coupling and facilitates high atomic coherence which causes lasing on the dipole forbidden 1^1S03_0 \leftrightarrow ^3P1_1 transition. We experimentally and theoretically characterize the lasing threshold and evolution of such a system, and investigate decoherence effects in an unconfined ensemble. We model the system using a Tavis-Cummings model, and characterize velocity-dependent dynamics of the atoms as well as the dependency on the cavity-detuning.Comment: 9 pages, 7 figure

    Some selected simulation experiments with the European Commission's QUEST model

    Get PDF
    This paper presents a set of simulation experiments using the European Commission's QUEST model to evaluate the effects of policy impulses and permanent supply side shocks in the four major EU economies. The simulation analysis illustrates the transmission mechanisms of specific monetary and fiscal policy shocks as well as two examples of permanent supply shocks.QUEST model, supply side shocks, monetary and fiscal policy, R�ger, in 't Veld,

    Infrared behaviour and fixed points in Landau gauge QCD

    Get PDF
    We investigate the infrared behaviour of gluon and ghost propagators in Landau gauge QCD by means of an exact renormalisation group equation. We explain how, in general, the infrared momentum structure of Green functions can be extracted within this approach. An optimisation procedure is devised to remove residual regulator dependences. In Landau gauge QCD this framework is used to determine the infrared leading terms of the propagators. The results support the Kugo-Ojima confinement scenario. Possible extensions are discussed.Comment: 4 pages, 1 figur

    Quantitative Study of Magnetotransport through a (Ga,Mn)As Single Ferromagnetic Domain

    Full text link
    We have performed a systematic investigation of the longitudinal and transverse magnetoresistance of a single ferromagnetic domain in (Ga,Mn)As. We find that, by taking into account the intrinsic dependence of the resistivity on the magnetic induction, an excellent agreement between experimental results and theoretical expectations is obtained. Our findings provide a detailed and fully quantitative validation of the theoretical description of magnetotransport through a single ferromagnetic domain. Our analysis furthermore indicates the relevance of magneto-impurity scattering as a mechanism for magnetoresistance in (Ga,Mn)As.Comment: 5 pages, 4 figures; v2: missing references included, figures recompressed to improve readabilit

    Finite temperature properties of the triangular lattice t-J model, applications to Nax_xCoO2_2

    Full text link
    We present a finite temperature (TT) study of the t-J model on the two-dimensional triangular lattice for the negative hopping tt, as relevant for the electron-doped Nax_xCoO2_2 (NCO). To understand several aspects of this system, we study the TT-dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall-coefficient across the entire doping range. We show systematically, how this simplest model for strongly correlated electrons describes a crossover as function of doping (xx) from a Pauli-like weakly spin-correlated metal close to the band-limit (density n=2n=2) to the Curie-Weiss metallic phase (1.5<n<1.751.5<n<1.75) with pronounced anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type behavior in the high-temperature regime. Upon further reduction of the doping, a new energy scale, dominated by spin-interactions (JJ) emerges (apparent both in specific heat and susceptibility) and we identify an effective interaction Jeff(x)J_{eff}(x), valid across the entire doping range. This is distinct from Anderson's formula, as we choose here t<0t<0, hence the opposite sign of the usual Nagaoka-ferromagnetic situation. This expression includes the subtle effect of weak kinetic AFM - as encountered in the infinitely correlated situation (U=U=\infty). By explicit computation of the Kubo-formulae, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RHR_H^*. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study

    AVIRIS ground data-processing system

    Get PDF
    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been under development at JPL for the past four years. During this time, a dedicated ground data-processing system has been designed and implemented to store and process the large amounts of data expected. This paper reviews the objectives of this ground data-processing system and describes the hardware. An outline of the data flow through the system is given, and the software and incorporated algorithms developed specifically for the systematic processing of AVIRIS data are described

    Sum-rule Conserving Spectral Functions from the Numerical Renormalization Group

    Full text link
    We show how spectral functions for quantum impurity models can be calculated very accurately using a complete set of ``discarded'' numerical renormalization group eigenstates, recently introduced by Anders and Schiller. The only approximation is to judiciously exploit energy scale separation. Our derivation avoids both the overcounting ambiguities and the single-shell approximation for the equilibrium density matrix prevalent in current methods, ensuring that relevant sum rules hold rigorously and spectral features at energies below the temperature can be described accurately.Comment: 4 pages + 1 page appendix, 2 figure

    Spin-squared Hamiltonian of next-to-leading order gravitational interaction

    Full text link
    The static, i.e., linear momentum independent, part of the next-to-leading order (NLO) gravitational spin(1)-spin(1) interaction Hamiltonian within the post-Newtonian (PN) approximation is calculated from a 3-dim. covariant ansatz for the Hamilton constraint. All coefficients in this ansatz can be uniquely fixed for black holes. The resulting Hamiltonian fits into the canonical formalism of Arnowitt, Deser, and Misner (ADM) and is given in their transverse-traceless (ADMTT) gauge. This completes the recent result for the momentum dependent part of the NLO spin(1)-spin(1) ADM Hamiltonian for binary black holes (BBH). Thus, all PN NLO effects up to quadratic order in spin for BBH are now given in Hamiltonian form in the ADMTT gauge. The equations of motion resulting from this Hamiltonian are an important step toward more accurate calculations of templates for gravitational waves.Comment: REVTeX4, 10 pages, v2: minor improvements in the presentation, v3: added omission in Eq. (4) and corrected coefficients in the result, Eq. (9); version to appear in Phys. Rev.

    Lepton interferometry in relativistic heavy ion collisions - a case study

    Full text link
    We propose intensity interferometry with identical lepton pairs as an efficient tool for the estimation of the source size of the expanding hot zone produced in relativistic heavy ion collisions. This can act as a complementary method to two photon interferometry. The correlation function of two electrons with the same helicity has been evaluated for RHIC energies. The thermal shift of the rho meson mass has negligible effects on the HBT radii.Comment: 5 pages and 2 figure
    corecore